Student ID:

Date: 28/10/2013

EHB211E Basics of Electrical Circuits MIDTERM I

Duration: 120 Minutes
Grading: 1) 30%, 2) 40%, 3) 30\%,
Exam is in closed-notes and closed-books format
For your answers please use the space provided in the exam sheet
GOOD LUCK!

1. Consider the two-terminal element shown below. Sketch the V-I characteristics of this element (V for x-axis; I for y-axis). For the zener diodes, use the model shown below; the Zener diode model has $\mathbf{- 4 V}$ breakdown voltage. Suppose that $R_{1}=R_{2}=R$.

Two-terminal element

Zener Diode Model
2. Consider the circuit graph shown below. It has 6 nodes and 9 edges.

a. Take node-4 as a reference. Find matrices \boldsymbol{A} and \boldsymbol{M} where $A \times I_{\text {edge }}=0$ and $M \times V_{\text {node }}=V_{\text {edge }}$.
b. Determine a proper tree to find all voltage and current values of edges. Given that $V_{1}=1 \mathrm{~V}, V_{2}=2 \mathrm{~V}, V_{5}=1 \mathrm{~V}, V_{7}=2 \mathrm{~V}, V_{8}=3 \mathrm{~V} ; I_{3}=1 \mathrm{~A}, I_{4}=3 \mathrm{~A}, I_{6}=3 \mathrm{~A}, I_{9}=1 \mathrm{~A}$.
c. Determine fundamental cut-sets and write down related $\mathbf{K C L}$ equations in matrix form. Find the values of $\boldsymbol{I}_{1}, \boldsymbol{I}_{2}, \boldsymbol{I}_{5}, \boldsymbol{I}_{7}$, and \boldsymbol{I}_{8}.
d. Determine fundamental loops and write down related KVL equations in matrix form. Find the values of $\boldsymbol{V}_{\mathbf{3}}, \boldsymbol{V}_{\mathbf{4}}, \boldsymbol{V}_{\mathbf{6}}$, and $\boldsymbol{V}_{\mathbf{9}}$.
3. For the op-amp in the circuit, use the model shown below.
a. Draw a graph model of the circuit. How many nodes and edges does your graph have? Note that the op-amp has four terminals.
b. Determine the voltage values of $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}\left(\boldsymbol{V}_{\boldsymbol{R}}\right.$ and $\left.\boldsymbol{V}_{\boldsymbol{R} 2}\right)$.

Op-amp based circuit

Op-amp Model

