EHB211E Basics of Electrical Circuits MIDTERM I

Duration: 120 Minutes Grading: 1) 30%, 2) 40%, 3) 30%, Exam is in closed-notes and closed-books format For your answers please use the space provided in the exam sheet GOOD LUCK!

1. Consider the two-terminal element shown below. Sketch the *V-I* characteristics of this element (*V* for *x*-axis; *I* for *y*-axis). For the zener diodes, use the model shown below; the Zener diode model has -4V breakdown voltage. Suppose that $R_1=R_2=R$.

Two-terminal element

Zener Diode Model

2. Consider the circuit graph shown below. It has 6 nodes and 9 edges.

- a. Take **node-4** as a reference. Find matrices *A* and *M* where $A \times I_{edge} = 0$ and $M \times V_{node} = V_{edge}$.
- b. Determine a **proper tree** to find all voltage and current values of edges. Given that $V_1=1V$, $V_2=2V$, $V_5=1V$, $V_7=2V$, $V_8=3V$; $I_3=1A$, $I_4=3A$, $I_6=3A$, $I_9=1A$.
- c. Determine fundamental cut-sets and write down related KCL equations in matrix form. Find the values of I_1 , I_2 , I_5 , I_7 , and I_8 .
- d. Determine fundamental loops and write down related **KVL** equations in matrix form. Find the values of V_3 , V_4 , V_6 , and V_9 .

- **3.** For the op-amp in the circuit, use the model shown below.
 - a. Draw a **graph model** of the circuit. How many nodes and edges does your graph have? Note that the op-amp has four terminals.
 - b. Determine the **voltage** values of R_1 and R_2 (V_{R1} and V_{R2}).

Op-amp based circuit

Op-amp Model