Student ID:

Date: 20/03/2017

EHB322E Digital Electronic Circuits MIDTERM I

Duration: 120 Minutes
Grading: 1) 35%, 2) 30\%, 3) 35\%
Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet GOOD LUCK!

1) Consider a buffer shown below. Use the following equations for your calculations.

Saturation region current-voltage equation: $I_{D}=\frac{1}{2} k_{p, n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{T 0 p, n}\right)^{2}$
Linear region current-voltage equation: $I_{D}=\frac{1}{2} k_{p, n}{ }_{p, n} \frac{W}{L}\left[2\left(V_{G S}-V_{T 0 p, n}\right) V_{D S}-V_{D S}^{2}\right]$
Transistor parameters: $k_{p}{ }^{\prime}=\mu_{p} c_{o x}=35 \mathrm{uA} / \mathrm{V}^{2}, k_{n}{ }^{\prime}=\mu_{n} c_{o x}=98 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=1 \mathrm{~V}, \mathrm{~V}_{\mathrm{TP}}=-0.5 \mathrm{~V}$, $\mathrm{W}_{\mathrm{N}-1}=5 \mathrm{u}, \mathrm{W}_{\mathrm{N}-2}=5 \mathrm{u}, \mathrm{L}_{\mathrm{P}}=\mathrm{L}_{\mathrm{N}}=1 \mathrm{u}$.

a) Find the maximum value of $\mathbf{W}_{\mathrm{P}-1}$ satisfying that $\boldsymbol{V}_{\text {in }}=\mathbf{5 V}$ results in $\boldsymbol{V}_{\text {out }}=\mathbf{5 V}$.
b) Find the value of $\mathbf{W}_{\mathbf{P}-2}$ if $\boldsymbol{V}_{\text {in }}=\mathbf{0 V}$ results in $\boldsymbol{V}_{\text {out }}=\mathbf{1 V}$.
c) Find the buffer's static power consumption values when $\boldsymbol{V}_{i n}=\mathbf{0 V}$ and $\boldsymbol{V}_{i n}=\mathbf{5 V}$.
d) Bu using the $\mathbf{W}_{\mathbf{P}-1}$ value found in a), find the value of the switching threshold voltage $\mathbf{V}_{\mathbf{M}}$ ($V_{i n}=V_{G N-2}$) of the first inverter.
2) Consider a buffer circuit consisting of two CMOS NAND gates, shown below. An external capacitor of $48 f F$ is connected to the output. A signal switching from high to low is applied to the input.
Equivalent resistor for an NMOS transistor: $\boldsymbol{R}_{N}=(\mathbf{1 2 k \Omega}) /(\mathbf{W} / \mathbf{L}) \mathbf{N}$
Equivalent resistor for a PMOS transistor: $\boldsymbol{R} \mathbf{P}=(\mathbf{2 4 k \Omega}) /(\mathbf{W} / \mathbf{L}) \mathbf{p}$
Gate capacitors $\boldsymbol{C}_{G S-N}=c_{o x} \mathrm{~W}_{\mathrm{N}} \mathrm{L}_{N}$ and $\boldsymbol{C}_{G S-P}=c_{o x} \mathrm{~W}_{P} \mathrm{~L}_{P}$; neglect $\boldsymbol{C}_{\boldsymbol{G D}}$ capacitors.
Transistor parameters: $c_{o x}=1 \mathrm{fF} / \mathrm{um} 2, \mathrm{~L}_{\mathrm{N}}=\mathrm{L}_{\mathrm{P}}=1 \mathrm{u}, \mathrm{W}_{\mathrm{N} 1}=2 \mathrm{u}, \mathrm{W}_{\mathrm{P} 1}=3 \mathrm{u}, \mathrm{W}_{\mathrm{N} 2}=4 \mathrm{u}, \mathrm{W}_{\mathrm{P} 2}=6 \mathrm{u}$.

Digital circuit with two CMOS NAND gates
a) Implement NAND gates with a Boolean function $f=\overline{x_{1} x_{2}}$ using CMOS transistors. If inputs of a NAND gates are shorted, as similarly we use in our circuit, then find its Boolean function.
b) Find the total propagation delay value between the input and the output.

- You should consider $C_{G S}$ capacitors as well as the external $C=48 f F$ capacitor
- Do not consider capacitors at nodes other than the node of gate inputs/outputs.

3) For a specific technology and a specific supply voltage, a CMOS inverter with parameters $\mathrm{W}_{\mathrm{P}}=1 \mathrm{u}, \mathrm{W}_{\mathrm{N}}=1 \mathrm{u}, \mathrm{L}_{\mathrm{P}}=1 \mathrm{u}, \mathrm{L}_{\mathrm{N}}=1 \mathrm{u}$, and a total output load capacitor of $1 f F$ has $t_{P H L}=1 \mathrm{~ns}$ and $t_{P L H}=2 \mathrm{~ns}$. By considering the same technology and the supply voltage,
a) Implement $f=x_{1} x_{2} \overline{x_{3}}+x_{1} \overline{x_{2}} x_{3}+\overline{x_{1}} x_{2} x_{3}+\overline{x_{1}} x_{4}$ with a CMOS circuit using minimum number of transistors. Draw the circuit. How many PMOS and NMOS transistors do you use?
b) Select $W_{P}=4 u$ for all PMOS transistors and $W_{N}=2 u$ for all NMOS transistors of your CMOS circuit. Find the worst case (largest) and the best case (smallest) $\boldsymbol{t}_{\text {PHL }}$ and $\boldsymbol{t}_{\boldsymbol{P L H}}$ values if a total output load capacitor is $2 f F$. Neglect internal node capacitors. You should report 4 delay values.
