
Logic Synthesis and Testing Techniques for Switching
Nano-Crossbar Arrays

Dan Alexandrescua, Mustafa Altunb, Lorena Anghelc, Anna Bernasconid,
Valentina Cirianie, Luca Frontinie, Mehdi Tahoorif

aIROC Technologies Grenoble, France, dan.alexandrescu@iroctech.com
bDept. of Electronics and Communication Engineering, Istanbul Technical University, Turkey,

altunmus@itu.edu.tr
cTIMA laboratory, Grenoble-Alpes University, France, lorena.anghel@imag.fr

dDipartimento di Informatica, Università di Pisa, Italy, anna.bernasconi@unipi.it
eDipartimento di Informatica, Università degli Studi di Milano, Italy, {valentina.ciriani,

luca.frontini}@unimi.it
fKarlsruhe Institute of Technology, Karlsruhe, Germany, tahoori@ira.uka.de

Abstract

Beyond CMOS, new technologies are emerging to extend electronic systems with
features unavailable to silicon-based devices. Emerging technologies provide new
logic and interconnection structures for computation, storage and communication
that may require new design paradigms, and therefore trigger the development of
a new generation of design automation tools. In the last decade, several emerging
technologies have been proposed and the time has come for studying new ad-hoc
techniques and tools for logic synthesis, physical design and testing. The main
goal of this project is developing a complete synthesis and optimization method-
ology for switching nano-crossbar arrays that leads to the design and construction
of an emerging nanocomputer. New models for diode, FET, and four-terminal
switch based nanoarrays are developed. The proposed methodology implements
logic, arithmetic, and memory elements by considering performance parameters
such as area, delay, power dissipation, and reliability. With combination of logic,
arithmetic, and memory elements a synchronous state machine (SSM), repre-
sentation of a computer, is realized. The proposed methodology targets variety
of emerging technologies including nanowire/nanotube crossbar arrays, magnetic
switch-based structures, and crossbar memories. The results of this project will
be a foundation of nano-crossbar based circuit design techniques and greatly con-
tribute to the construction of emerging computers beyond CMOS. The topic of this
project can be considered under the research area of “Emerging Computing Mod-

Preprint submitted to Embedded Hardware Design (Microprocessors and Microsystems)August 17, 2017

els” or “Computational Nanoelectronics”, more specifically the design, modeling,
and simulation of new nanoscale switches beyond CMOS.

Keywords: Nano-Crossbar, Emerging Computing Model, Computational
Nanoelectronics

1. Introduction

CMOS transistor dimensions have been shrinking for decades in an almost
regular manner. Nowadays this trend has reached a critical point and it is widely
accepted that the trend will end in a decade [1]. Even Gordon Moore, who
made the most influential prediction in 1965 about CMOS size shrinking (Moore
Law), accepted that his prediction will lose it validity in near future [2]. At this
point, research is shifting to novel forms of nanotechnologies including molecular-
scale selfassembled systems [3, 4]. Unlike conventional CMOS that can be pat-
terned in complex ways with lithography, self-assembled nanoscale systems gen-
erally consist of regular structures. Logical functions and memory elements are
achieved with arrays of crossbar-type switches. This project targets this type of
switching crossbars by using models based on diodes, FETs, and four-terminal
switches [5, 6, 7], as illustrated in Figure 1. In particular, Figure 2 shows three
implementations of a specific Boolean function with these models. Among these
models a model based on four-terminal switches deserves a special mention.

A four-terminal switch is specifically developed for crosspoints of nanoarrays;
note that each crosspoint has four neigbour crosspoints. The four terminals of
the switch are all either mutually connected (ON) or disconnected (OFF). If a
controlling literal takes the value of 1, the switch is ON; otherwise, it is OFF.
On the other hand, diode and FET are conventional two-terminal switch based
devices, i.e., their two terminals are either connected (ON) or disconnected (OFF).

In this paper we describe the Marie Skłodowska-Curie grant agreement No
691178 (European Union’s Horizon 2020 research and innovation programme).
Section 2 provides a general overview of the project. The following sections sum-
marize the obtained results and the main objectives identified in the first part of the
project. In particular, Section 3 investigates logic synthesis and area optimization
techniques for diode, FET, and four-terminal switch based nanoarrays by compar-
ing array sizes needed to implement given Boolean functions. Section 4 shows a
new decomposition method for the four-terminal switch based model. Section 5
briefly discusses reconfiguration and redundancy approaches needed to face tem-
poral and spatial variations of component electrical properties and hard faults.

2

Diode type FET type Four-terminal type

Figure 1: Different models of switching crossbars.

Section 5 discusses the development of defect, variation and fault tolerant tech-
niques in the presence of high defect densities and extreme parametric variations,
particularly for crossbar array nano-architectures. Section 6 introduces capacitor-
resistor models for diode, FET, and four-terminal switch based nano-crossbar ar-
rays that are to be used for power and delay analysis. Section 7 concludes the
paper.

This article is an extended version of the conference report in [8].

2. Overview of the Project

2.1. Research Objectives
The main objective of this project is developing a complete synthesis method-

ology for nanoscale switching crossbars that leads to the design and construction
of an emerging computer. To achieve this objective, we follow a roadmap, illus-
trated in Figure 3, with sub-objectives listed below.

1. Finding optimal crossbar sizes, modeling, and optimization: Fundamen-
tally, all building parts of a computer use Boolean functions for their op-
erations. Therefore, implementing Boolean functions with optimal sizes
significantly advances us toward achieving our main goal. Besides size,
other parameters such as power consumption, delay, and reliability have
been considered by developing related models. This part of the project has
been successfully concluded developing a systematic approach for synthesis
and performance optimization (see Sections 3 and 4).

2. Implementing the elements by considering reliability, area, delay, and power
dissipation of the crossbars: We implement arithmetic elements such as

3

adders and multipliers, and memory elements such as flip-flops and registers
as building blocks. We also perform optimization for circuit performance
parameters using the specifics of applicable technologies. Our methodol-
ogy will considers all circuit performance parameters. This can allow us
to compare our results with those of CMOS circuits in a realistic and com-
prehensive manner. First, the trade-offs between parameters will be inves-
tigated. Then, the specifics of applicable technologies for the performance
parameters will be determined. Finally, a comprehensive optimization soft-
ware package for the concurrent physical and logical design of applicable
technologies will be revealed.

3. Realizing a synchronous state machine (SSM): We will implement a SSM
with a programmable multi-array (tile) architecture such that each cross-
point in arrays corresponds to a programmable four-terminal switch. We
intend not to use any individual transistor and switch that causes intercon-
nection problems and significantly worsens the density. Another potential
problem is signal quality degradation that could upper-bound the number of
separate arrays/crossbars in the architecture. Conventionally, this problem
is solved by adding simple restoration circuits at the outputs of each circuit
block (in our case a crossbar). Unfortunately, this solution would be quite
costly for nano-crossbars since they are compact and hard-to-manipulate
structures. Another solution for the signal degradation problem especially
for memories is using accurate sense amplifiers that should be built-in a
crossbar memory using the same technology. We have presented our pre-
liminary results using memristor memory arrays [9]. Additionally, as a con-
tingency plan, we will design a single clocked programmable array that
synchronously restores the signals.

2.2. State of the Art
Researchers have been interested in models of regular arrays since the seminal

paper of Akers in 1971 [10]. In recent years, this interest sees a dramatic spike
with the rise of emerging technologies based on regular arrays of switches [11].
Such technologies have apparent advantages over conventional CMOS technolo-
gies, such as high density (small area and delay) and easy manufacturability due
to self-assembly [4]. Our models target these emerging technologies including
nanowire/nanotube crossbar arrays, magnetic switch-based structures, and cross-
bar memories [12, 13, 14, 15]. Using diode, FET, and four-terminal switch based
models we aim to achieve a synchronous state machine at the end of this project
that would be the first in the literature.

4

Figure 2: Implementation of a Boolean function f = x1x̄2 + x̄1x2 with a) diode, b) FET,
and c) 4-terminal models.

Figure 3: Project overview.

5

Type Array Size Formulas (Optimal)

Diode (number of products in f) x (“number of literals in f ” + 1)

FET (number of literals in f) x (“number of products in f ” +

“number of products in f D”)

Figure 4: Array size formulas for diode and FET based implementations.

Type Array Size Formula (Non-optimal)

Four-

terminal
(number of products in f) x (number of

products in f D)

Figure 5: Array size formula for four-terminal switch based implementation.

3. Logic synthesis with area optimization for diode, FET, and four-terminal
switch based nanoarrays

In this section, we survey logic synthesis techniques for diode, FET, and four-
terminal switch based nanoarrays [16, 17, 18, 19]. We present experimental re-
sults on standard benchmark circuits to compare array sizes needed to implement
given Boolean functions. For diode and FET based nanoarrays, Boolean functions
are implemented by using conventional techniques that are diode-resistor logic
and CMOS logic [16]. This implies an important constraint regarding nanoarray
structures. Boolean functions should be implemented in their sum-of-products
(SOP) forms; other forms such as factored or BDD (Binary Decision Diagram)
cannot be used since they require manipulation/wiring of switches that is not ap-
plicable for self-assembled nanoarrays.
Array sizes for diode and FET based nanoarrays: Given a target Boolean func-
tion f , we derive formulas of the array sizes. This is shown in Figure 4. For diode
based implementations, each product of f requires a row (horizontal line), and
each literal of f requires a column (vertical line) in an array. Additionally, one ex-
tra column is needed to obtain the output. For FET based implementations, each
product of f and its dual, fD, requires a column, and each literal of f requires a
row in an array. As an example, consider a target function f = x1x2+x1x2 having
4 literals and 2 products; fD = x1x2 + x1 x2 has 2 products. This results in array
sizes of 2 × 5 and 4 × 4 for diode and FET based implementations, respectively.
Note that both formulas, for diode and FET, always result in optimal array sizes;
no further reduction is possible.

6

Benchmark CMOS Diode
4-

Terminal

Optimal 4-

Terminal
Benchmark CMOS Diode

4-

Terminal

Optimal 4-

Terminal

Alu 0 30 18 6 6 Dc1 2 72 36 16 12

Alu 1 30 18 6 6 Dc1 5 35 15 12 6

Alu 2 30 18 6 6 Dc1 6 36 18 9 6

Alu 3 30 18 6 6 Ex5 31 156 104 32 24

B12 0 80 32 24 12 Ex5 33 110 77 21 21

B12 1 120 70 35 16 Ex5 46 81 54 18 18

B12 3 30 20 8 8 Ex5 49 72 54 12 12

B12 4 42 28 8 8 Ex5 50 81 63 14 14

B12 6 132 77 35 18 Ex5 61 64 48 12 12

B12 7 110 66 24 18 Ex5 62 49 35 10 10

B12 8 90 70 14 14 Misex1 1 48 16 8 8

C17 0 36 18 9 6 Misex1 2 132 55 35 15

C17 1 30 20 8 8 Misex1 3 156 60 40 24

Clpl 0 64 32 16 12 Misex1 4 121 44 28 16

Clpl 1 36 18 9 9 Misex1 5 90 45 25 15

Clpl 2 16 8 4 4 Misex1 6 143 66 42 18

Clpl 3 144 72 36 18 Misex1 7 81 36 20 15

Clpl 4 100 50 25 15 Mp2d 4 345 75 90 24

Dc1 1 25 10 6 6 Newtag 108 72 32 18

Figure 6: Array sizes of three different nano-crossbar based logic families [16, 18].

Four-terminal switch based implementation considers each crosspoint of an
array as a four-terminal switch [7]. Four terminals of the switch are all either
mutually connected (ON-logic 1 applied) or disconnected (OFF-logic 0 applied).
Boolean functions are implemented with top-to-bottom paths in an array by tak-
ing the sum (OR) of the product (AND) of literals along each path. This makes
Boolean functions implemented in their sum-of-products (SOP) forms.
Array size for four-terminal switch based nanoarrays: Given a target Boolean
function f , the array size formula can be derived by considering that each product
of f and its dual, fD, require an array column and an array row, respectively. This
is shown in Figure 5. As an example, consider a target function f = x1x2 + x1x2
and fD = x1x2 + x1 x2 both having 2 products. This results in an array size of
2× 2.

Examining the array size formulas in Figure 4 and Figure 5, we see that while
the formulas in Figure 4 always result in optimal sizes, the sizes derived from
the formula in Figure 5, that is, for four-terminal switch based arrays, are not
necessarily optimal [7]. For example, consider a target function f = x1x2x3 +
x4x5x6. It has only two products, but its dual has 32 = 9 products. With using the
formula in Figure 5, an array with 9 rows and 2 columns would be required. This
is not an optimal solution. By placing 0’s between two columns implementing the
two products, one can implement the function with an array having 3 rows and 3

7

columns.
In the following part we present an algorithm that finds an optimal size imple-

mentation of any given target Boolean function. Finding whether a certain array
with assigned literals to its switches implements a target function is the main prob-
lem in finding optimal sizes. This problem requires to check if each assignment
of 0’s and 1’s to the switches, corresponding to a row of the target function’s truth
table, results in logic 1 (a top-to-bottom path of 1’s exists). To check this we have
to enumerate all top-to-bottom paths; the size of this task grows exponentially
with the array size. This is a general statement that holds also for our algorithm
described below. The presented algorithm is a preliminary result of an ongoing
study. Although its performance for runtime and relatively for time complexity
is not quite satisfactory, it gives us an important inference: four-terminal switch
based arrays overwhelm those based on two-terminal switches regarding the array
size.

Our simple brute force algorithm finds optimal array sizes to implement given
target Boolean functions with arrays of four-terminal switches in three steps:

1. Obtain irredundant sum-of-products (ISOP) expressions of a given-target
function fT and its dual fTD. Determine the upper bound (UB) on the array
size using the formula in Figure 5. Obtain the lower bound (LB) values
directly from the lower bound table proposed in [7].

2. List arrays with dimensions (R×C) between UB and LB and sort them re-
garding array sizes in ascending order. While ordering, if the array sizes
are the same – for example 3 × 5 and 5 × 3 – then first take the array hav-
ing smaller number of rows. Suppose that there are a total of N different
arrays (R×C)1...(R×C)i...(R×C)N in the list. For Step 3, start with i = 1
(1≤ i ≤N).

3. If the array can implement fT then the corresponding size (R×C)i is the
optimal size; otherwise increase i by one and repeat this step again.

Complexity analysis of our algorithm is as follows. Suppose that a target
function fT and its dual fTD have n andm number of products, respectively. Also
suppose that fT has k variables. In Step 2, the total number of arrays in the list is
upper bounded by n×m by using the formula in Figure 5. In step 3, the worst-case
time complexity of checking if an array implements fT is O(2k × n ×m). As a
result, the worst-case complexity of the algorithm is O(2k×n2×m2). Of course,
this expression is for the worst-case; for most of the cases a tiny percentage of
2k truth table rows is used. In practical terms, each of the results in Figure 4
is obtained under a limit of 2 hours. Another perspective is hardware sharing.

8

Especially if target functions with same variable sets (same truth table inputs) are
given, hardware sharing is perfectly applicable in Step 3.

Simulation results: In Figure 6, we report synthesis results for standard bench-
mark circuits. We treat each output of a benchmark circuit as a separate target
function. The number of products for each target function fT and its dual fTD

are obtained through sum-of-products minimization using the program Espresso.
The array size values for “Diode”, “CMOS”, and “4-terminal” are calculated by
using the formulas in Figure 4 and Figure 5. The array size values for “Optimal
4-terminal” are obtained using the presented optimization algorithm. Examining
the numbers in Figure 6, we always see the same sequence from the worst to the
best result as “CMOS”, “Diode”, “4-terminal”, and “Optimal 4-terminal”. This
proves that models based on four-terminal switches overwhelm those based on
two-terminal switches regarding the array size. Further, the numbers obtained by
our optimal synthesis method [16, 18] compare very favorably to the numbers
obtained by the previous method [7].

4. Lattices and decomposition methods

An important issue in logic synthesis is to produce efficient implementations
of single or multi-output Boolean functions. The standard CMOS synthesis is
typically performed with Sum of Products (or SOP) minimization procedures,
leading to two-level circuits. Two-level logic minimization has been one of the
most studied problems in logic synthesis. Big efforts have been done to obtain
efficient Sum of Products minimization procedures and their related CAD tools.
Whereas research and synthesis tools for SOP minimization are quite mature and
consolidated, the study of networks for new technologies is still at early stages. In
particular, four-terminal switching lattice synthesis has been just studied in some
recent works [7, 16, 18, 17, 19, 20].

In this section we briefly present some new results obtained within this project,
that show how the cost of implementing a four-terminal switching lattice could be
mitigated by exploiting Boolean function decomposition techniques. The basic
idea of this approach is to first decompose a function into some subfunctions,
according to a given functional decomposition scheme, and then to implement
the decomposed blocks with separate lattices, or physically separated regions in
a single lattice. Since the decomposed blocks usually correspond to functions
depending on fewer variables and/or with a smaller on-set, their synthesis should
be more feasible and should produce lattice implementations of smaller size. In
the framework of switching lattice synthesis, where the available minimization

9

tools are not yet as developed and mature as those available for CMOS technology,
reducing the synthesis of a target Boolean function to the synthesis of smaller
functions could represent a very beneficial approach [21, 22]. As a first work for
this project, we have focused on the particular decomposition method that gives
rise to the bounded-level logic networks called P-circuits [22, 23, 24]. P-circuits
are extended forms of Shannon cofactoring, where the expansion is with respect
to an orthogonal basis xi ⊕ p (i.e., xi = p), and xi ⊕ p (i.e., xi 6= p), where p
is a function defined over all variables except for a critical variable xi (e.g., the
variable with more switching activity or with higher delay that should be projected
away from the rest of the circuit). They can be defined as follows:

P-circuit(f) = (xi ⊕ p) f= + (xi ⊕ p) f 6= + f I

where I is the intersection of the projections of f onto the two sets xi = p and
xi 6= p, and

1. (f |xi=p \ I) ⊆ f= ⊆ f |xi=p

2. (f |xi 6=p \ I) ⊆ f 6= ⊆ f |xi 6=p

3. ∅ ⊆ f I ⊆ I .

This definition can be easily generalized to incompletely specified Boolean func-
tions. Thus, the synthesis idea of P-circuits is to construct a network for f by
appropriately choosing the sets f=, f 6=, and f I as building blocks.

The same idea can be exploited in the switching lattice framework: the sub-
functions f=, f 6=, and f I depend on n − 1 variables instead of n, they have a
smaller on-set than f , and their lattice synthesis should produce lattices of reduced
area. Therefore, the overall lattice for f derived composing minimal lattices for
f=, f 6=, and f I , could be smaller than the one derived for f without exploiting
its P-circuits decomposition. This expectation has been confirmed by a set of
experimental results, (see [25]), where the utility of the decomposition-based ap-
proach has been evaluated applying the two synthesis methods presented in [7]
and in [20]. These results demonstrate that lattice synthesis benefits from this
type of Boolean decomposition, yielding smaller circuits with an affordable com-
putation time (even less in some cases). Indeed, in 30% of the analyzed cases the
synthesis of switching lattices based on the P-circuit decomposition of the logic
function allows to obtain a more compact area in the final resulting lattice, with
an average gain of at least 20%.

We can address more complex types of decompositions, both within the class
of P-circuits (with more expressive projection functions p) and beyond. In par-
ticular, we also consider a decomposition scheme that can be applied to lattice

10

synthesis of a special class of regular Boolean functions called D-reducible func-
tions. D-reducible functions [26] are functions whose points are completely con-
tained in an affine space strictly smaller than the whole Boolean cube {0, 1}n. A
D-reducible function f can be written as f = χA · fA, where A is the smallest
affine space that contains the on-set of f , χA is the characteristic function of A,
and fA is the projection of f onto A. Notice that f and fA have the same number
of points, but these are now compacted in a smaller space.

The D-reducibility of a function f can be exploited in the lattice synthesis pro-
cess: the idea is to independently find lattice implementations for the projection
fA and for the characteristic function χA of A, and then to compose them in or-
der to construct the lattice for f . Since the two functions fA and χA depend on
fewer variables than the original function f , their synthesis is more feasible and
can produce lattice implementations of smaller area.

The area of the overall lattice can be further reduced exploiting the peculiar
structure of the characteristic function χA, that represents the minterms of an
affine subspace of {0, 1}n. To this aim, we can synthesize compact lattices of
affine spaces whose characteristic function is represented by the product of sin-
gle literals and XOR factors of two literals. The experimental results validate
the approach, demonstrating that the lattice synthesis based on the D-reducibility
property allows to obtain a more compact area in 15% of the considered cases,
with an average gain of about 24%. Moreover, the experimental results show that
we can reduce the synthesis time of the lattices of about 50%, with respect to the
time needed for the synthesis of plain lattices [27].

5. Built-in Variation, Defect, and Fault Tolerance

One of the main focuses of this project is development of defect, variation and
fault tolerant techniques in the presence of high defect densities and extreme para-
metric variations, particularly for crossbar array nano-architectures. To tolerate
high defect rates and variations, our revolutionary approach is to integrate defect
tolerance to improve the manufacturing yield (for fabrication defects), fault tol-
erance to ensure the lifetime reliability (for errors during normal operation), and
variation tolerance to ensure the predictability and performance (for parametric
variations), in the design methodologies for future nanotechnologies. Adaptive
and built-in defect, variation and fault tolerant design flows, fundamentally dif-
ferent from conventional approaches, are proposed in which the objective is to
ensure high manufacturing yield and runtime reliability of the circuit at extremely
low costs. We plan to exploit the opportunities created by this nanotechnology

11

such as reprogrammability and abundance of programmable resources to provide
defect, variation and fault tolerance.

5.1. Built-in Self-testing (BIST) and Self-diagnosis (BISD)
New nanomanufacturing process techniques and steps for nano-scale devices

that are conceptually different from conventional lithography-based process tech-
niques may result in new failure mechanisms not completely understood today.
Therefore, test techniques for such systems should not be restricted to a particular
fault model, but be very comprehensive to cover all logical fault models.

The main novelties of our proposed BIST are 100% exhasutive coverage of all
logic-level faults (including stuck-at, bridging, open, and functional faults) and
minimality of test vector and configurations set. Our proposed approach is based
on implementing single-term functions in all crossbars during the test mode which
allows propagation of all sensitized faults to the outputs, and hence, detection [28,
29]. The truth table of a single-term function consists of only one minterm or one
maxterm. The input pattern corresponding to that minterm (maxterm) is called
activating input (AI). A single-term function can be viewed as an AND (OR)
function with possible inversions at the inputs and/or output, e.g. F = A +
B′ + C ′ + D with AIF : ABCD = 0110. If the primary inputs to a logic
network of single-term functions are assigned such that the inputs to each single-
term function is its activating input, then all (subsets of multiple) sensitized faults
in the network will be detected. Figure 7 shows an example of a network of single-
term functions with test vector 100011. This test vector results in activating inputs
at the inputs of all single-term functions in this logic network. All sensitized faults
(including all multiple subsets), i.e. stuck-at-v for all the nets with value v′ and
bridging faults for all pairs with opposite values, are detected.

By implementing different sets of single-term functions in crossbars and ap-
plying appropriate test patterns to sensitize all faults, all crossbars can exhaus-
tively be tested. In each test configuration, a subset of faults are sensitized and
then the corresponding single-term functions are implemented in the logic blocks
(crossbars). A set of test configurations is then required to cover all faults and
achieve 100% coverage. Test vector and configuration generation process can be
fully automated. The number of test configurations is logarithmic to the size of
array [30]. For instance, a design with one billion (109) nets can exhaustively be
tested for all possible 1018 logic-level faults in only 30 test configurations.

Diagnosis is achieved by selecting the subset of sensitized fault in each test
configuration in such a way that the pass/fail outcomes of test configurations
uniquely encodes the faulty resources. The number of diagnosis configurations

12

a +b

0

0

0

1

1

1
0

0

0

1

1

0

1

1

0

0

1
a

b

F1

F2

F3

F4

F5

F6

F7

F8

F9

a .b a+b

a .b a+b a.b

a +b a .b

a +b

Figure 7: A logic network of single-term functions

is also logarithmic to the number of faults. The subsets of sensitized faults in
diagnosis configurations can be modeled by block codes. Each diagnosis configu-
ration represents a code word and sensitized faults in each diagnosis configuration
are bit positions in the corresponding code word. In order to achieve multiple fault
diagnosis, block codes with desirable distance dmin (t = b(dmin−1)/2c error cor-
recting capability), such as BCH codes [31, 32, 33], need to be considered and the
corresponding diagnosis configurations (single-term functions and test vectors)
can be generated. In this case, any required t multiple fault diagnosis within each
crossbar can precisely be diagnosed. Note that since all n crossbars are tested
and diagnosed simultaneously in the proposed BIST/BISD scheme, n.t multiple
faults in the crossbar array can be diagnosed with only O(t+ log n) test/diagnosis
configurations [34].

5.2. Built-in Self-mapping (BISM)
Since it is expected that all manufactured nano-chips contain a considerable

percentage of defects even in a mature fabrication process, defect tolerance is
inevitable. The goal of defect tolerance is to bypass defective resources using
test and diagnosis information. Since defects are device specific, this part of the
design flow, mapping the application and bypassing defective resources, has to

13

be device specific as well. However, the information required for such mapping,
which is obtained only after test and diagnosis, is not available at the design time.
Therefore, some parts of the application mapping phase have to be postponed
from design time to the test time. Nevertheless, we propose a novel design flow to
minimize such per-chip customized design efforts in Sec. 5.3.

As parts of the design flow are shifted to the test time, we propose a built-in
self-mapping (BISM) approach to minimize per-chip customized mapping efforts.
BISM allows the crossbar array to be configured by the on-chip interface circuitry
and bypass defective resources. It also reduces physical design efforts in which
detailed placement and routing will be performed on-the-fly. In other words, only
global placement and routing has to be completed at the design time and detailed
configuration of individual crossbars (for logic mapping or signal routing) will be
determined at the configuration time by BISM.

We propose the following BISM schemes depending on the defect density
level.
Blind BISM. This is the simple and fast implementation of BISM. In this scheme,
a random configuration for the crossbar is generated on-the-fly and then application-
dependent BIST is used to check whether this configuration is defect-free. The
above process is repeated if BIST detects any fault in the generated configura-
tion. Blind BISM is suitable for low defect densities in which it is expected that
a randomly generated configuration is defect-free with a high probability such
that few configuration retries are performed. Since no application-independent
test is performed and no diagnosis is involved (neither application-independent
nor application-dependent), blind BISM is very fast and effective for low defect-
densities. The self-reconfiguration circuitry is also very simple and small.
Greedy BISM. When defect density is high, blind BISM approach becomes in-
effective due to too many configuration retries. In this case, greedy BISM is
performed as follows. It starts with a random configuration followed by BIST.
If the configuration is failed, application-dependent BISD is performed to iden-
tify the defective resources utilized in the most recent configuration. The self-
reconfiguration uses the diagnosis information to only bypass (reconfigure) the
defective parts of that configuration. This process is repeated until the last config-
uration is defect-free. Note that each retry phase in greedy BISM takes longer than
blind BISM since application-dependent BISD is used and self-reconfiguration is
more complex. However, the number of retries is smaller compared to blind BISM
for higher defect densities, resulting in shorter mapping time in overall.
Hybrid BISM. This BISM procedure is the combination of the above procedures
and works for all defect densities and also various defect density distributions

14

across different crossbars in a nano-chip, i.e. ideal for both global and local defect
density variations. In hybrid BISM, the BISM procedure initially starts with blind
BISM. If it is not successful after a pre-defined number of retries, it automatically
switches to greedy BISM. The hybrid approach can quickly configure the cross-
bars with smaller defect densities and also performs well on crossbars with higher
defect densities.

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

R
e

c
o

n
fi

g
u

ra
ti

o
n

 R
e

tr
ie

s

% Defect Density

Blind BISM

Greedy BISM

0 5 10 15 20
10

0

10
1

10
2

10
3

10
4

N
u

m
b

e
r

o
f

R
e

c
o

n
fi

g
u

ra
ti

o
n

 R
e

tr
ie

s

% Defect Density

Blind BISM

Greedy BISM

(a) 16× 16 (b) 32× 32

Figure 8: The number of configuration retries (a) 16× 16 crossbar (b) 32× 32 crossbar

Figure 8 shows the number reconfiguration retries for defect-free matching
(used for logic mapping and signal routing) in 16 × 16 and 32 × 32 crossbars
for various defect densities using blind and greedy BISM. The number of BISM
retries as well as the number of test configurations (blind BISM) and diagnosis
configurations (greedy BISM) have been considered here.

5.3. Application-Independent Defect Tolerant Flow
In the conventional defect tolerant flow, the existence and the location of de-

fective elements are identified using test and diagnosis steps and stored in de-
fect map. Defect tolerance is achieved by avoiding defective resources in the
physical design flow using the defect map. Particularly, placement and routing
phases of the physical design use the defect map in order to map the design to
the crossbar array (the link from physical design back to the crossbar array) by
using only defect-free resources. This flow is shown in Figure 9(a). We call this
flow defect-aware since design phases use the defect map information. However,
due to prohibitively large size of defect map and per chip customization of entire

15

design flow, this traditional approach cannot be used for high-volume production
of nano-chips.

Most drawbacks of the traditional defect-aware flow are due to the fact that
this method is application dependent, i.e. defects are handled in a per-application
basis. In contrast to the defect-aware design flow, we propose a defect-unaware
design flow to tolerate defects in crossbar arrays. This design flow is shown in
Figure 9(b). In this flow, defect tolerance is performed once and the same recov-
ered (defect-free) set of resources are used for all applications. In the proposed
flow, almost all design steps remain unaware of the existence and the location of
defects within the nano-chip. The key idea in the proposed defect-unaware flow is
to identify universal defect-free subsets of resources within the original partially-
defective nano-chip. All design steps work with this universal defect-free subset
of the chip called the design view. The size of these “universal” subsets is identical
for all nano-chips fabricated in the same process environment (similar defect den-
sities). Also, these universal defect-free subsets remain unchanged for different
applications mapped into the same nano-chip, making this approach application-
independent. There is a final mapping phase, with very low complexity, at the end
of physical design flow that makes the connection between the defect-free design
view and the actual physical view of the nano-chip which contains actual defects.
This is the only defect-aware step which has to be performed per chip. This final
mapping phase will be implemented as a part of the proposed BISM approach.

The main idea of this mapping flow is to make some of the defect tolerant flow
generic and independent of individual fabricated crossbars and chips, and then
some final mapping has to be done in a per-chip basis. This is in contrast with
the traditional flow that the entire physical design and mapping steps are done in
per-chip basis. The “generic” part of the flow has to work with a generic model of
crossbars and should only work with expected defect distribution. This means that
for a fabricated NxN crossbar, there will be a k × k defect-free subset assumed
(k < N), which cannot be adjusted in a crossbar basis, otherwise it would defeat
the purpose of “generality” and “device independence”. As the reviewer also
mentioned, in reality, the same value of k cannot be guaranteed for all crossbars.
Therefore, at a higher level, a notion of crossbar yield comes to the picture, which
means whether the actual defect-free subset of a particular crossbar is at least
k × k. Otherwise, that crossbar is marked as defective and unusable. In other
words, the actual crossbar is either usable (has a defect-free subset of at least
k × k) or unusable. This information can be used in global mapping phase and
high-level defect and fault tolerant scheme, which is in our future work.

16

Defect Map

(Huge)

Test and Diagnosis

n x n
crossbars

(with defects)

Modified

Design

Physical

Design

Crossbar Array

R
e
p
e
a
te

d
 f
o
r
e
a
c
h
 c

h
ip

Test and Diagnosis

N x N
crossbars

(with defects)

k x k
crossbars
(no defects)

Design

Defect Map
O(N)

Physical Design
(Defect Unaware)

k

Final Mapping
(Defect Aware)

Process
Defect
Density

samples

k

(a) (b)

Figure 9: (a) Traditional defect-aware design flow (b) The proposed defect-unaware design
flow

5.4. Built in Self Reconfiguration and Adaptation
As it has been already proved, future complex devices based on nanowire

crossbars provide better density over conventional CMOS devices due to the new
methods for growing and assembling. They are also a very good candidate for
future high density interconnects, combinational circuits and storage parts. Some
of the potential solutions are of regular types [35], others based on memristive
networks are irregular structures [36].

These technologies are highly sensitive to design variations, defects and in-
termittent faults, or susceptible to environmental factors, such as thermal stress,
radiation, and so on. It may result in crossbars structures with high number of de-
fect rates related to manufacturing or environmental constraints, much more than
what are considered today in conventional CMOS technologies. These threats can
be seen as major obstacles to adopting and using such architectures and technolo-
gies to build future application specific circuits or even processors.

Once the crossbar array size is determined and the defect map is provided
with BISM methodology, built in self reconfiguration and adaptation architectural
schemes can be also designed to cope with higher defect level. In most of the
cases they are using additional spare units. As a matter of fact, new fault tolerant
design paradigm is needed, since with such high defect densities both the reg-
ular resources and the redundant ones will be affected by the defects, disabling
the basic principle of traditional fault tolerance (use of a fault-free redundant unit
to perform the job of a faulty regular unit). When the defect level exceeds the
capability of the BSIM tool, this possibility allows to provide enough spares in

17

SU2 SU1 SU0 RU2 RU1 RU0RU3

Spare Units: k=3 Functional Units: n=4

MUX

M3
0

M3
1

M3
2

M3
3

d0d1d2d3

MUX MUX MUX

M0
0

M0
1

M0
2

M0
3

(a)

n+k F&D
Latches 0

n+k F&D
Latches 1

n+k F&D
Latches R-1

MUX
A1 Ar

Reconfiguration
Logic

MUXes 1

In/Out

Crossbar array
(n+k)

n+k

m1

n

(b)

Figure 10: Reconfiguration technique for a crossbar array implemented with spare single function
units. (a) shows the global architecture (for k = 3 and n = 4). (b) shows the connection with
BIST unit.

the form of k additional column-like units. This is solution is easier to imple-
ment and design as the complexity of the reconfiguration functions are easier to
master. Specific min-terms functions in the spare independent columns can be
implemented and used by the reconfiguration functions. These functions could
repair multiple faults affecting both the regular and spare elements and perform
the repair by means of a single test/repair pass. The scheme also minimizes the
hardware cost for implementing the repair control and for storing the reconfigura-
tion information. It optimizes the BISR cost and the repair efficiency. These are
important attributes when we have to consider high defect densities. The general
architecture of this approach is presented in Figure 10.

We dispose of (n, n + k) crossbar, where n× n is the size of the initial func-
tional units in the crossbar and k the number of spares available in a column like
organization (k ≥ 0). The results of crossbar testing performed by means of the
BIST/BISD comparison operations are stored in the n + k F&D registers, and
point out exactly the location of the defect, selected by the value of the address
bits A1, A2, ..., Ar at MUX (Figure 10(b)). The reconfiguration logic drives the
MUXes1 (which are also shown in Figure 10(a)) performing the repair. These
MUXes connect the right-most functional units to the k fault-free spares. This re-
configuration can be done at static level and the granularity n can be chosen base
on the crossbar size and the defect level. Evaluations on different sizes, defect
levels and functions are currently under study, but preliminary results allow suc-

18

Figure 11: A nano-crossbar cell and its different forms for diode, FET, and 4-terminal
switch based crosspoints.

cessfully combining faulty regular and with fault-free spare units, but also faulty
functional with faulty spare units (in case of a high defect density) to create a
fault-free unit. The combination works as far as the two units are affected by
faults involving the same polarities or errors.

6. Capacitor-Resistor Modeling

Previous studies on performance modeling and analysis of nanoarrays lack of
accuracy and comprehensiveness. Capacitor-resistor models and their parameter
values are determined with weak assumptions without in depth analysis of nano-
array technologies [37]. Additionally, some studies exploit current or predictive
technology models for nanoscale CMOS which certainly has major differences
from nanoarray based technologies, both in design and manufacturing levels [38,
39]. In this part, we aim to overcome these shortcomings by introducing accurate
modeling and performance analysis techniques for nano-crossbar arrays [40].

Nano-crossbar arrays are regular structures consisting of identical crosspoint
cells. Figure 11 illustrates a cell with the proposed capacitor-resistor placements.
It consists of two crossed lines/wires with intersecting parts shown in green and
nonintersecting parts shown in grey. The intersecting part is expected to behave
as an electronic component such as a diode, a FET, or a switch. We model this
part with wire resistors and four identical crosspoint capacitors CCP ’s. The reason

19

N3

N1

N2=N1

N4=N3

N3

N2=N1

N1

N4

N3 N4

N1

N2

 a) b) c)

Figure 12: Capacitor and switch placements for crosspoints based on a) diode, b) FET, and
c) four-terminal switch (N1-N2: upper, N3-N4: lower).

of using four capacitors instead of one is the necessity of considering resistances
between N1-N2 and N3-N4 nodes. Using a single crosspoint capacitor is only
applicable if these resistances are negligibly small. For the nonintersecting parts,
we use a wire resistor Rw and a wire capacitor Cw that is composed of parasitic
wire, parallel wire, wire-layer, and wire-bulk capacitors. Other parameters defined
are wire diameterD, layer thickness tl (between wires), and pitch size pw (distance
between parallel wires).

We explicitly show our model’s applicability for three different technologies
of nanowire crossbar arrays where each crosspoint behaves as a diode, a FET, and
a four-terminal switch as shown in the upper part of Figure 11. Here, along with
wire resistors we use switches having series ON and OFF parasitic resistances.
For the diode-based crosspoint, it is assumed that the upper and the lower wires
are p-type and n-type nanowires, respectively. The crosspoint is modeled with a
switch, representation of a pn-diode four capacitors, and four wire resistors. For
the FET based crosspoint, the layer between two wires acts as an insulator, so
no current flows between the wires. The upper wire is modeled with a resistor
and the lower wire is modeled as a switch controlled by the upper wire’s voltage.
Since the upper wire does not conduct current, N1 and N2 nodes are shorted that
results in two crosspoint capacitors, each having a value of 2CCP . For the four-
terminal switch based crosspoint, the upper and the lower wires are identically
modeled using total of four capacitors and four switches. Here, current can flow
in multiple directions. Comparison of these three models with neglected wire
resistors is visualized in Figure 12 (N1-N2: upper, N3-N4: lower).

Simplified power-delay model
We simplify our capacitor-resistor models with an aim of effectively using

them for power and delay analysis [40]. We transform in-between node capacitors
CCP ’s, shown in Figure 12, into grounded equivalent node capacitors CCP−eqv’s

20

Figure 13: CCP and its equivalent capacitors a) CCP−eqv−1 on V1 and b) CCP−eqv−2 on
V2.

that is to be compatible with the Elmore delay model. Miller theorem is used
for this purpose. Equivalent grounded capacitors for CCP ’s are obtained with the
formulas given in Figure 13. Formulas are derived by exploiting the conservation
of the capacitor charge QC ; recall that IC = C × dVC

dt
and ∆QC

∼= C ×∆VC .
Our crosspoint model and its equivalent with grounded capacitors are shown

in Figure 14a) and Figure 14b), respectively. There are two criteria for compar-
ing these two models: 1) effectiveness of using them in power-delay analysis,
and 2) accuracy and easiness of calculating related capacitor values. For the first
criteria, the model in Figure 14b) overwhelms the other; grounded capacitors are
highly desired both in circuit simulations and hand calculations. However, things
are reversed for the second criteria. Since we define CCP ’s with physical reason-
ing, we can calculate their values using technology parameters such as distances,
concentrations, and physics constants. On the other hand, accurately calculating
the values of CCP−eqv’s necessitates to know node voltage values and this might
not be practical regarding that node voltages are dynamically changing between a
supply voltage and a ground, namely VDD and GND = 0V. This problem can be
solved using an assumption of CCP−eqv = 3CCP to calculate CCP−eqv at the cost
of lower accuracy [40]. This assumption along with other probable assumptions
are thoroughly justified in the referred paper.

In simulations with Spice (circuit simulation tool), we see that even for small
crossbars having less than 10 crosspoints, the model in Figure 14a) requires a
large computational load that results in impractical runtimes needed to have delay
and power values. On the other hand, using the model in Figure 14b) with an
assumption of CCP−eqv = 3CCP is very efficient in terms of the computing time.
Also it is reported that the delay values obtained with this model deviated only

21

Figure 14: Our crosspoint models using a) real crosspoint capacitors and b) their equivalent
grounded capacitors.

3% in average from the values using the model in Figure 14a) [40].

7. Conclusion

In this paper we have summarized the results obtained in the first part of the
project. In particular, we have investigated logic synthesis and area optimization
techniques for diode, FET, and four-terminal switch based nanoarrays. We have
proposed new decomposition methods for the four-terminal switch based model.
We have also studied defect, variation and fault tolerant techniques in the pres-
ence of high defect densities and extreme parametric variations, particularly for
crossbar array nano-architectures. Finally, we have introduced capacitor-resistor
models for power and delay analysis.

Integrating a new technology into a mature industry such as the semiconductor
industry is a long road in which device performances and manufacturability have
to be developed jointly through a blend of advanced research, technology devel-
opment and industry-compliant implementation. One of the major promises of
emerging nanotechnologies for on-chip applications is ultimate integration den-
sity, manufacturing and integration cost reduction, and the reduction of power
consumption. However, there is a big gap in 1) extending the existing electronic
design automation flow for emerging technologies in order to introduce them in
the architecture and system design in a systematic-way, and 2) novel computer ar-
chitecture systems based on emerging technologies to provide high performance
and minimize power consumption at the same time. Therefore, future work on this
project includes the introduction of hybrid EDA flow as well as emerging com-
puter architectures by gathering well respected experts working in these broad
fields. In particular, the remaining part of the project will focus on implementa-
tion of logic, arithmetic, and memory elements, in order to realize a nano-crossbar

22

based synchronous state machine.

8. Acknowledgments

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie Skłodowska-Curie grant agree-
ment No 691178.

References

[1] Overall Technology Roadmap Characteristics, Tech. rep., International Technology
Roadmap for Semiconductors (2010, retrieved 2013).

[2] M. Dubash, Maaoore -’- s law is dead, says gordon moore, Techworld. com (13).

[3] K. Ariga, M. V. Lee, T. Mori, X.-Y. Yu, J. P. Hill, Two-dimensional nanoarchitec-
tonics based on self-assembly, Advances in Colloid and Interface Science 154 (1-2)
(2010) 20 – 29.

[4] G. M. Whitesides, B. Grzybowski, Self-Assembly at All Scales, Science 295 (5564)
(2002) 2418–2421.

[5] W. Lu, C. Lieber, Nanoelectronics from the Bottom Up, Nat Mater 6 (11) (2007)
841–850.

[6] P. Avouris, Molecular Electronics with Carbon Nanotubes, Acc. Chem. Res. 35 (12)
(2002) 1026–1034.

[7] M. Altun, M. D. Riedel, Logic Synthesis for Switching Lattices, IEEE Transactions
on Computers 61 (11) (2012) 1588–1600.

[8] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani, L. Frontini,
M. Tahoori, Synthesis and Performance Optimization of a Switching Nano-Crossbar
Computer, in: 2016 Euromicro Conference on Digital System Design (DSD), 2016,
pp. 334–341.

[9] M. Ayasoyu, M. Altun, S. Ozoguz, K. Roy, Spin-torque memristor based offset can-
cellation technique for sense amplifiers, in: The International Conference on Synthe-
sis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design
(SMACD), 2017.

[10] S. B. Akers, A Rectangular Logic Array, in: Switching and Automata Theory, 1971.,
12th Annual Symposium on, 1971, pp. 79–90.

23

[11] A. Y. Zomaya, Handbook of Nature-Inspired and Innovative Computing, 2006.

[12] Y. C. Chen, S. Eachempati, C. Y. Wang, S. Datta, Y. Xie, V. Narayanan, Automated
Mapping for Reconfigurable Single-electron Transistor Arrays, in: Design Automa-
tion Conference (DAC), 2011 48th ACM/EDAC/IEEE, 2011, pp. 878–883.

[13] A. Dehon, Nanowire-based Programmable Architectures, J. Emerg. Technol. Com-
put. Syst. 1 (2) (2005) 109–162.

[14] A. Khitun, M. Bao, K. L. Wang, Spin Wave Magnetic NanoFabric: A New Approach
to Spin-Based Logic Circuitry, IEEE Transactions on Magnetics 44 (9) (2008) 2141–
2152.

[15] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi, S. Kvatinsky,
Logic Operations in Memory Using a Memristive Akers Aarray, Microelectronics
Journal 45 (11) (2014) 1429 – 1437.

[16] M. C. Morgul, M. Altun, Synthesis and optimization of switching nanoarrays, in:
Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2015 IEEE
International Symposium on, IEEE, 2015, pp. 161–164.

[17] O. Tunali, M. Altun, Defect tolerance in diode, fet, and four-terminal switch
based nano-crossbar arrays, in: Nanoscale Architectures (NANOARCH), 2015
IEEE/ACM International Symposium on, IEEE, 2015, pp. 82–87.

[18] M. Altun, Computing with emerging nanotechnologies, in: Low-Dimensional and
Nanostructured Materials and Devices, Springer, 2016, pp. 635–660.

[19] O. Tunali, M. Altun, Permanent and transient fault tolerance
for reconfigurable nano-crossbar arrays, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, DOI:
10.1109/TCAD.2016.2602804doi:10.1109/TCAD.2016.2602804.

[20] G. Gange, H. Søndergaard, P. J. Stuckey, Synthesizing Optimal Switching Lattices,
ACM Trans. Design Autom. Electr. Syst. 20 (1) (2014) 6:1–6:14.

[21] A. Bernasconi, V. Ciriani, R. Drechsler, T. Villa, Logic Minimization and Testability
of 2-SPP Networks, IEEE Trans. on CAD of Integrated Circuits and Systems 27 (7)
(2008) 1190–1202.

[22] A. Bernasconi, V. Ciriani, G. Trucco, T. Villa, Using flexibility in p-circuits by
boolean relations, IEEE Trans. Computers 64 (12) (2015) 3605–3618.

24

[23] A. Bernasconi, V. Ciriani, G. Trucco, T. Villa, On Decomposing Boolean Functions
via Extended Cofactoring, in: Design Automation and Test in Europe (DATE), 2009.

[24] A. Bernasconi, V. Ciriani, V. Liberali, G. Trucco, T. Villa, Synthesis of P-Circuits
for Logic Restructuring, Integration 45 (3) (2012) 282–293.

[25] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, T. Villa, Logic syn-
thesis for switching lattices by decomposition with p-circuits, in: Euromicro Con-
ference on Digital Systems Design (DSD), 2016.

[26] A. Bernasconi, V. Ciriani, Dimension-reducible boolean functions based on affine
spaces, ACM Trans. Design Autom. Electr. Syst. 16 (2) (2011) 13.

[27] A. Bernasconi, V. Ciriani, L. Frontini, G. Trucco, Synthesis on switching lattices of
dimension-reducible boolean functions, in: IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), 2016.

[28] M. B. Tahoori, Application-Dependent Testing of FPGAs, in: IEEE Transaction on
Very Large Scale Integrated Circuits , 2006.

[29] M. B. Tahoori, Application-Dependent Diagnosis of FPGAs, in: Proc. International
Test Conference, 2004, pp. 645–654.

[30] M. B. Tahoori, Application-dependent testing of fpgas, IEEE Trans. VLSI Syst.
14 (9) (2006) 1024–1033. doi:10.1109/TVLSI.2006.884053.
URL https://doi.org/10.1109/TVLSI.2006.884053

[31] A. Hocquenghem, Codes corecteurs d’erreurs, in: Chiffres, Vol. 2, 1959, pp. 147–
156.

[32] R. C. Bose, D. K. Ray-Chaudhuri, On a Class of Error Correcting Binary Group
Codes, in: Intl Control, Vol. 3, 1960, pp. 68–79.

[33] W. W. Peterson, Encoding and Error Correction Procedures for the Bose-Chaudhuri
Codes, in: IRE Trans. Inf. Theory, Vol. IT-6, 1960, pp. 459–470.

[34] M. B. Tahoori, High resolution application specific fault diagnosis of fpgas, IEEE
Trans. VLSI Syst. 19 (10) (2011) 1775–1786. doi:10.1109/TVLSI.2010.2056941.
URL https://doi.org/10.1109/TVLSI.2010.2056941

[35] G. Snider, Computing with hysteretic resistor crossbars, Appl. Phys. A 80 (2005)
1165 – 1172.

25

[36] A. Z. Stieg, A. V. Avizienis, H. O. Sillin, M. A. C. Martin-Olmos, J. K. Gimzewski,
Emergent Criticality in Complex Turing B-type Atomic Switch Networks, Advanced
Materials 24 (2) (2012) 286 – 293.

[37] M. M. Ziegler, C. A. Picconatto, J. C. Ellenbogen, A. Dehon, D. Wang, Z. Zhong,
C. M. Lieber, Scalability simulations for nanomemory systems integrated on the
molecular scale, Annals of the New York Academy of Sciences 1006 (1) (2003)
312–330.

[38] M. Gholipour, N. Masoumi, A comparative study of nanowire crossbar and mosfet
logic implementations, in: EUROCON-International Conference on Computer as a
Tool (EUROCON), 2011 IEEE, IEEE, 2011, pp. 1–4.

[39] W. Lu, P. Xie, C. M. Lieber, Nanowire transistor performance limits and applica-
tions, IEEE transactions on Electron Devices 55 (11) (2008) 2859–2876.

[40] M. C. Morgul, F. Peker, M. Altun, Power-delay-area performance modeling and
analysis for nano-crossbar arrays, in: VLSI (ISVLSI), 2016 IEEE Computer Society
Annual Symposium on, IEEE, 2016, pp. 437–442.

26

