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Abstract

Multi-terminal switching lattices are typically exploited for modeling switching
nano-crossbar arrays that lead to the design and construction of emerging nanocom-
puters. Typically, the circuit is represented on a single lattice composed by four-
terminal switches. In this paper, we propose a two-layer model in order to further
minimize the area of regular functions, such as autosymmetric and D-reducible
functions, and of decomposed functions. In particular, we propose a switching lat-
tice optimization method for a special class of “regular” Boolean functions, called
autosymmetric functions. Autosymmetry is a property that is frequent enough
within Boolean functions to be interesting in the synthesis process. Each autosym-
metric function can be synthesized through a new function (called restriction),
depending on less variables and with a smaller on-set, which can be computed
in polynomial time. In this paper we describe how to exploit the autosymmetry
property of a Boolean function in order to obtain a smaller lattice representation
in a reduced minimization time. The original Boolean function can be constructed
through a composition of the restriction with some EXORs of subsets of the input
variables. Similarly, the lattice implementation of the function can be constructed
using some external lattices for the EXORs, whose outputs will be inputs to the
lattice implementing the restriction. Finally, the output of the restriction lattice
corresponds to the output of the original function. Experimental results show
that the total area of the obtained lattices is often significantly reduced. More-
over, in many cases, the computational time necessary to minimize the restriction
is smaller than the time necessary to perform the lattice synthesis of the entire
function. Finally, we propose the application of this particular lattice composi-
tion technique, based on connected multiple lattices, to the synthesis on switching
lattices of D-reducible Boolean functions, and to the more general framework of
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lattice synthesis based on logic function decomposition.

Keywords: Logic synthesis for emerging technologies, Switching lattices

1. Introduction

Going beyond standard CMOS networks representing Boolean functions, the
interest on new circuit models has grown in the recent literature. In this frame-
work, the logic optimization of switching lattices for emerging nanoscale tech-
nologies have been proposed and discussed in [6, 41].

A switching lattice is a two-dimensional network of four-terminal switches.
Each switch is linked to the four neighbors of a lattice cell, so that these are either
all connected or disconnected. A Boolean function can be represented using a
switching lattice associating each four-terminal switch to a Boolean literal: if the
literal has value 1 the corresponding switch is connected to its four neighbors,
otherwise it is not connected. In this model, the Boolean function evaluates to 1 if
and only if there exists a connected path between two opposing edges of the lattice,
e.g., the top and the bottom edges (see Figure 2 for an example). The synthesis
problem on a lattice thus consists in finding an assignment of literals to switches
in order to implement a given target function with a lattice of minimal size. The
idea of using regular two-dimensional arrays of switches, to implement Boolean
functions, was first proposed in a paper by Akers in 1972 [1]. Recently, with
the advent of a variety of emerging nanoscale technologies, synthesis methods
targeting lattices of multi-terminal switches have found a renewed interest [2, 3,
4, 5, 6, 37, 41].

Previous studies on this subject [18, 19, 20] have shown how the cost of
implementing a four-terminal switching lattice could be mitigated by exploiting
Boolean function decomposition techniques. The basic idea of this approach is
to first decompose a function into some subfunctions, according to a given func-
tional decomposition scheme, and then to implement the decomposed blocks with
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physically separated regions in a single lattice. Since the decomposed blocks usu-
ally correspond to functions depending on fewer variables and/or with a smaller
on-set, their synthesis should be more feasible and should produce lattice im-
plementations of smaller size. In the framework of switching lattice synthesis,
where the available minimization tools are not yet as developed and mature as
those available for CMOS technology, we are interested in reducing the size of
the function to be minimized with a preprocessing phase. A smaller input func-
tion to a minimization algorithm can imply a smaller area circuit and a reduced
synthesis time.

In this paper we study the lattice synthesis of a special class of regular
Boolean functions, called Autosymmetric functions. Thus, the regularity of a
function f of n variables is expressed by an autosymmetry degree k (with 0 ≤
k ≤ n), computed in polynomial time. While the extreme value k = 0 means
no regularity, for k ≥ 1 the function f is said to be autosymmetric, and a new
function fk, called the restriction of f , is identified in polynomial time

In a sense, the restriction fk is “equivalent” to, but smaller than f , depends
on n− k variables (y1, . . . , yn−k) only, and the number of points of fk is equal to
the one of f divided by 2k. Therefore, the minimization of fk is naturally easier
than that of f . The new variables y1, . . . , yn−k are built as EXOR combinations of
the original variables, that is yi = EXOR(Xi), with Xi ⊆ {x1, . . . , xn}. These
EXOR equations are called reduction equations.

Although autosymmetric functions form a subset of all possible Boolean func-
tions, a great amount of standard functions of practical interest fall in this class.
For istance, the 24% of the functions from a classical collection of benchmarks [43]
have at least one non-degenerated autosymmetric output, and their minimization
time is critically reduced in the frameworks of SOP and SPP synthesis [24, 25, 26].
While the total number of Boolean functions of n variables is 22n , the number of
autosymmetric functions is (2n − 1)22

n−1 , which is much larger than the number
of the classical symmetric functions, i.e., the ones invariant under any permuta-
tion of their variables, that is 2n+1 [24]. Note that an autosymmetric function f
depends in general on all the n input variables, however we are be able to study
f in a n− k dimensional space; i.e., f is in general non-degenerated, whereas all
degenerated functions are autosymmetric.

In [20] it is described a different lattice decomposition, based on the concept
of “D-reducibility”. D-reducible functions, similarly to autosymmetric functions,
exhibit a regular structure that can be described using the EXOR operation. How-
ever, D-reducibility and autosymmetry are different regularities: autosymmetric
functions can be studied in a new space whose variables are EXOR combinations
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of the original ones, while D-reducible functions are studied in a projection space
producing an expression where the EXOR gates are in AND with a SOP form.
There are examples of autosymmetric functions that are not D-reducible, and of
D-reducible functions that are not autosymmetric.

The autosymmetry of a function f can be exploited in the minimization pro-
cess, according to the strategy shown in Figure 1. First detect the autosymmetry
degree k of f . If k > 0, derive the restriction fk of f and the corresponding reduc-
tion equations. Second, minimize fk with any standard method: two level logic
as SOP [34], Reed Muller [42]; three-level logic as SPP [8, 31, 38] (OR of ANDs
of EXORs), EXSOP [35, 36] (EXOR of ORs of ANDs), or switching lattices, as
proposed in this paper. We note that, in the worst case, the lattice minimization
requires time exponential in the number of points of the function, however, this
number is strongly reduced for fk if compared to f . We can finally construct a
lattice for f from the one of fk and from the reduction equations, whose computa-
tion requires some EXORs. This approach is convenient because: (i) the number
of points of fk is |f |/2k and fk depends only on n − k variables; (ii) the lattice
minimization of fk is naturally easier than that of f ; and (iii) the number of EX-
ORs that we add to the logic is at most 2(n − k). On the other hand, we require
a second lattice containing the EXORs whose outputs are the input variables (i.e.,
y1, . . . , yn−k) of the lattice for fk. However, the reduction equations are in general
EXORs of a very reduced number of variables and their lattice implementations
have limited size.

Finally, we consider the application of this lattice composition technique,
based on multiple lattices connected to each other, to the synthesis on switch-
ing lattices of D-reducible functions [13, 14, 15, 16], and to the more general
framework of lattice synthesis based on logic function decomposition, focusing in
particular on the P-circuit decomposition model [11, 12, 23, 29].

Experimental results show that by applying the proposed method to autosym-
metric functions, we obtain more compact lattices and, in many cases, the com-
putational time necessary to minimize the restriction is smaller than the time nec-
essary to perform the lattice synthesis of the entire function. Moreover, our ex-
perimentation has confirmed that the application of this method turns out to be
convenient also in other contexts of lattice synthesis based on functional decom-
position.

This paper is an extended version of the conference paper in [21], where only
the composition method for autosymmetric functions is described. The paper
is organized as follows. Preliminaries on switching lattices and autosymmetric
Boolean functions are described in Section 2. Section 3 discusses the problem
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Figure 1: Synthesis of an autosymmetric function f through the synthesis of its restriction
fk.

of lattice composition, while Section 4 discusses the lattice implementation of au-
tosymmetric functions. In Section 5, we show how to apply the proposed multiple-
lattice composition approach both to the class of D-reducible functions, and in the
general framework of lattice synthesis based on functional decomposition. Sec-
tion 6 provides the experimental results and Section 7 concludes the paper.

2. Preliminaries

In this section we briefly review some basic notions and results on switching
lattices [1, 6, 37] and autosymmetric Boolean functions [9, 10, 24, 25, 26, 27, 38].

2.1. Switching Lattices
A switching lattice is a two-dimensional array of four-terminal switches. The

four terminals of the switch link to the four neightbours of a lattice cell, so that
these are either all connected (when the switch is ON), or disconnected (when the
switch is OFF).

A Boolean function can be implemented by a lattice in terms of connectivity
across it:

• each four-terminal switch is controlled by a Boolean literal;

• each switch may be also labelled with the constant 0, or 1;

• if the literal takes the value 1, the corresponding switch is connected to its
four neightbours, else it is not connected;

• the function evaluates to 1 if and only if there exists a connected path be-
tween two opposing edges of the lattice, e.g., the top and the bottom edges;

• input assignments that leave the edges unconnected correspond to output 0.
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Figure 2: A four terminal switching network implementing the function f = x1x2x3 +
x1x2+x2x3 (a); its corresponding lattice form (b); the lattice evaluated on the assignments
1,1,0 (c) and 0, 0, 1 (d), with grey and white squares representing ON and OFF switches,
respectively.

For instance, the 3×3 network of switches in Figure 2 (a) corresponds to the lattice
form depicted in Figure 2 (b), which implements the function f = x1x2x3+x1x2+
x2x3. If we assign the values 1, 1, 0 to the variables x1, x2, x3, respectively, we
obtain paths of gray square connecting the top and the bottom edges of the lattices
(Figure 2 (c)), indeed on this assignment f evaluates to 1. On the contrary, the
assignment x1 = 0, x2 = 0, x3 = 1, on which f evaluates to 0, does not produce
any path from the top to the bottom edge (Figure 2 (d)).

The synthesis problem on a lattice consists in finding an assignment of literals
to switches in order to implement a given target function with a lattice of minimal
size. The size is measured in terms of the number of switches in the lattice.

A switching lattice can similarly be equipped with left edge to right edge con-
nectivity, so that a single lattice can implement two different functions. This fact
is exploited in [5, 6] where the authors propose a synthesis method for switching
lattices simultaneously implementing a function f according to the connectivity
between the top and the bottom plates, and its dual function fD according to
the connectivity between the left and the right plates. Recall that the dual of a
Boolean function f depending on n binary variables is the function fD such that
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f(x1, x2, . . . , xn) = fD(x1, x2, . . . , xn). This method produces lattices with a size
that grows linearly with the number of products in an irredundant sum of product
(SOP) representation of f , and consists of the following steps:

1. find an irredundant, or a minimal, SOP representation for f and fD:

SOP (f) = p1 + p2 + . . . ps and SOP (fD) = q1 + q2 + . . . qr ;

2. form a r × s switching lattice and assign each product pj (1 ≤ j ≤ s) of
SOP (f) to a column and each product qi (1 ≤ i ≤ r) of SOP (fD) to a
row;

3. for all 1 ≤ i ≤ r and all 1 ≤ j ≤ s, assign to the switch on the lattice
site (i, j) one literal which is shared by qi and pj (the fact that f and fD are
duals guarantees that such a shared literal exists for all i and j).

This synthesis algorithm thus produces a lattice for f whose size depends on
the number of products in the irredundant SOP representations of f and fD,
and it comes with the dual function implemented for free. For instance, the
lattice depicted in Figure 2 has been built according to this algorithm, and it
implements both the function f = x1x2x3 + x1x2 + x2x3 and its dual fD =
x1x2x3 + x1x2 + x2x3.

The time complexity of the algorithm is polynomial in the number of products.
However, the method does not always build lattices of minimal size for every tar-
get function, since it ties the dimensions of the lattices to the number of products
in the SOP forms. In particular this method is not effective for Boolean functions
whose duals have a a very large number of products. Another reason that could
explain the non-minimality of the lattices produced in this way is that the algo-
rithm does not use Boolean constants as input, i.e., each switch in the lattice is
always controlled by a Boolean literal.

In [37], the authors have proposed a different approach to the synthesis of
minimal-sized lattices, which is formulated as a satisfiability problem in quantified
Boolean logic and solved by quantified Boolean formula solvers. This method
uses the previous algorithm to find an upper bound on the dimensions of the lattice.
It then searches for successively better implementations until either an optimal
solution is found, or a preset time limit has been exhausted. Experimental results
show how this alternative method can decrease lattice sizes considerably. In this
approach the use of fixed inputs (i.e., constant values 0 and 1) is allowed.
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2.2. Autosymmetric Boolean functions
In this section we briefly review autosymmetric functions that are introduced

in [38] and further studied in [9, 10, 24, 25, 26, 27]. For the description of these
particular regular functions we need to summarize several concepts of Boolean
algebra [33].

Given two binary vectors α and β, let α⊕β be the elementwise EXOR be-
tween α and β, for example 11010⊕ 11000 = 00010. We recall that ({0, 1}n,⊕)
is a vector space, and that a vector subspace V is a subset of {0, 1}n containing
the zero vector 0, such that for each v1 and v2 in V we have that v1⊕v2 ∈ V .
The vector subspace V contains 2k vectors, where k is the dimension of V , and
it is generated by a basis B containing k vectors. Indeed B is a minimal set of
vectors of V such that each point of V is an EXOR combination of some vectors
in B.

Let us consider a completely specified Boolean function f : {0, 1}n → {0, 1},
recalling that f can be described as the set of binary vectors in {0, 1}n for which
f takes the value 1 (i.e., the ON-set of f ). Using this notation we can give the
following definition. The function f is closed under a vector α ∈ {0, 1}n, if for
each vector w ∈ {0, 1}n, w ⊕ α ∈ f if and only if w ∈ f .

For example, the function f = {0000, 0001, 0010, 0011, 0100, 0101, 0110,
0111, 1000, 1011, 1101, 1110} is closed under α = 0011, as it can be easily veri-
fied.

It is easy to observe that any function f is closed under the zero vector 0.
Moreover, if a function f is closed under two different vectors α1, α2 ∈ {0, 1}n,
it is also closed under α1⊕α2. Therefore, the set Lf = {β: f is closed under β}
is a vector subspace of ({0, 1}n,⊕). The set Lf is called the vector space of f .
For instance, the function f of our previous example is closed under the vectors
in the vector space Lf = {0000, 0011, 0101, 0110}.

For an arbitrary function f , the vector space Lf provides the essential infor-
mation for the definition of the autosymmetry property:

Definition 1 ([25]). A completely specified Boolean function f is k-autosymmetric,
or equivalently f has autosymmetry degree k, 0 ≤ k ≤ n, if its vector space Lf
has dimension k.

In general, f is autosymmetric if its autosymmetry degree is k ≥ 1. For instance,
the function f of our running example is 2-autosymmetric since its vector space
Lf has dimension 2.

We now define a special basis, called canonical, to represent Lf . Consider
a 2k × n matrix M whose rows correspond to the points of a vector space V of
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dimension k, and whose columns correspond to the variables x1, x2, . . . , xn. Let
the row indices of M be numbered from 0 to 2k − 1. We say that V is in binary
order if the rows of M are sorted as increasing binary numbers. We have:

Definition 2 ([25]). Let V be a vector space of dimension k in binary order. The
canonical basis BV of V is the set of points corresponding to the rows of M with
indices 20, 21, . . . , 2k−1. The variables corresponding to the first 1 from the left of
each row of the canonical basis are the canonical variables of V , while the other
variables are non-canonical.

It can be easily proved that the canonical basis is indeed a vector basis [32]. The
canonical variables of Lf are also called canonical variables of f .

Example 1. Consider the vector space Lf of the function f of our running exam-
ple. We can arrange its vectors in a matrix in binary order:

x1 x2 x3 x4
0 0 0 0 0
1 0 0 1 1
2 0 1 0 1
3 0 1 1 0

The canonical basis is composed of the vectors in position 1 and 2, that are the
vectors 0011 and 0101. The canonical variables of f are x2 (corresponding to
the first 1 in 0101) and x3 (corresponding to the first 1 in 0011). The remaining
variables x1 and x4 are non-canonical.

For a vector α ∈ {0, 1}n and a subset S ⊆ {0, 1}n, consider the set α⊕S =
{α⊕ s | s ∈ S}. In a sense, the vector α is used to “translate” the subset S. If
the set S is a vector space, then its “translations” are called affine spaces:

Definition 3. Let V be a vector subspace of ({0, 1}n,⊕). The set A = α⊕V , α
∈ {0, 1}n, is an affine space over V with translation point α.

Note that α ∈ A, because S contains the zero vector 0, hence α = α⊕ 0 ∈ A.
Moreover, any other vector of A could be chosen as translation point α, thus
generating the same affine space.

There is a simple formula that characterizes the vector space associated to a
given affine space A, namely [33]:

V = α ⊕ A, with α any point in A.
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That is, given an affine space A there exists a unique vector space V such that
A = α⊕V , where α is any point of A.

As proved in [9], the points of a k-autosymmetric function f can be partitioned
into ` = |f |/2k disjoint sets, where |f | denotes the number of points of f ; all these
sets are affine spaces over Lf . I.e., S = α⊕Lf , where S is any such a space and
α∈ f . Thus:

f =
⋃̀
i=1

(αi ⊕ Lf )

and for each i, j, i 6= j, (αi ⊕ Lf ) ∩ (αj ⊕ Lf ) = ∅. The vectors α1, . . ., α` are
chosen as all the points of f where all the canonical variables have value 0.

Example 2. Consider the function

f = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1011, 1101, 1110}

of our running example. By Example 1 the canonical variables of f are x2 and
x3. Thus, if we take the points of f with all canonical variables set to 0, i.e.,
α1 = 0000, α2 = 0001, and α 1 = 1000, we have

f = (0000⊕ Lf ) ∪ (0001⊕ Lf ) ∪ (1000⊕ Lf ),

where Lf = {0000, 0011, 0101, 0110}.

Autosymmetric functions can be reduced to “equivalent, but smaller” func-
tions; in fact, if a function f is k-autosymmetric, then there exists a function fk
over n− k variables, y1, y2, . . ., yn−k, such that

f(x1, . . . , xn) = fk(y1, . . . , yn−k) ,

where each yi is an EXOR combination of a subset of xi’s. These combinations
are denoted EXOR(Xi), where Xi ⊆ X , and the equations yi = EXOR(Xi),
i = 1, . . . , n − k, are called reduction equations. The function fk is called a
restriction of f ; indeed fk is “equivalent” to, but smaller than f , and has |f |/2k
points only.

The restriction fk can be computed from f and its vector space Lf by first
identifying the canonical variables, and then deriving the cofactor of f where
all the canonical variables are set to 0 (see [9] and [25] for more details). The
reduction equations correspond to the homogeneous system of linear equations
whose solutions define the vector space Lf , and they can be derived applying
standard linear algebra techniques as shown in [9, 25].
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Example 3. Consider the 2-autosymmetric function f in our running example,
with Lf = {0000, 0011, 0101, 0110} and canonical variables x2 and x3. We can
build f2 by taking the cofactor fx2=0,x3=0 = {00, 01, 10}, that contains only 3
points and corresponds to the function f2(y1, y2) = y1y2. The homogeneous sys-
tem whose solutions are {0000, 0011, 0101, 0110} is:{

x1 = 0
x2 ⊕ x3 ⊕ x4 = 0

Thus the reduction equations are given by

y1 = x1 (1)
y2 = x2 ⊕ x3 ⊕ x4 . (2)

Finally, the function f can be represented as:

f(x1, x2, x3, x4) = f2(y1, y2) = y1y2 = x1(x2 ⊕ x3 ⊕ x4) .

We can note that f is indeed a composition of f2 and the reduction equations (1)
and (2).

3. Lattice composition

First of all, we recall from [37] that given the switching lattices implementing
two functions f and g, we can easily construct the lattices representing their dis-
junction f + g and their conjunction f · g composing the two lattices for f and g
and using a padding column of 0s and a padding row of 1s, respectively, as shown
in Figure 3. In particular, for the disjunction, the column of 0s separates all top-
to-bottom paths in the lattices for f and g, so that the accepting paths for the two
functions never intersect; this, in turn, implies that there exists a top-to-bottom
connected path in the lattice for f + g if and only if there is at least one connected
path for f or for g. If the lattices for f and g have a different number of rows, we
add some rows of 1s to the lattice with fewer rows, so that each accepting path can
reach the bottom edge. Similarly, for the conjunction the padding row of 1s allows
to join any top-to-bottom accepting path for the function f with any top-to-bottom
accepting path for g, so that the overall lattice evaluates to 1 if and only if both f
and g evaluate to 1. As before, if the lattices for f and g have a different number
of columns, we add some columns of 0s to the lattice with fewer columns, so that
an accepting path for one of the two functions can never reach the opposite edge
of the lattice if the other function evaluates to 0.
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Figure 3: Lattice implementation of f ∨ g (a) and of f ∧ g (b).

More in general, these simple composition rules can be used to implement a
switching lattice for a function f starting from a decomposition of f into sub-
functions. The basic idea of this approach is to first decompose f according to a
given functional decomposition scheme, then generate the lattices for each com-
ponent function, and finally implement the original function by a single composed
lattice obtained by gluing together appropriately the lattices of the component
functions. Previous studies on this subject [18, 20] demonstrated that lattice syn-
thesis benefits from this decomposition-based approach: since the decomposed
blocks usually correspond to functions depending on fewer variables and/or with
a smaller on-set, their synthesis should produce lattice implementations of smaller
size, yielding an overall lattice of smaller dimension in an affordable computation
time.

In all these examples, from the simple cases of f+g and f ·g, to the decompo-
sition schemes described in [18, 20], the lattice for the original function has been
obtained implementing the decomposed blocks with physically separated regions
in a single overall lattice. We will refer to this approach as internal composition.

However, there are situations where this kind of internal composition cannot
be directly applied. For instance, consider a function f depending on n binary
variables defined as

f(x1, . . . , xn) = g(y1, . . . , yk) ,

where (i) g is a Boolean function depending on k < n variables; (ii) for any
i, yi = hi(Si), Si ⊆ {x1, . . . , xn}, and hi is a Boolean function depending on
|Si| variables. Ideally, we would like to derive a lattice implementation for f
substituting in a lattice implementation for g each occurrence of a variable yj with
a lattice implementation of the corresponding function hj . This task, however,
requires some care to be performed correctly.

Consider a very simple case: f(x1, x2, x3, x4) = (x1 ⊕ x2)(x3 ⊕ x4), that can
be seen as a functional composition f = g(y1, y2) where g is simply a conjunction
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Figure 4: (a) Lattice implementation of g = y1y2; (b) lattices for y1 = x1 ⊕ x2 and
y2 = x3 ⊕ x4; (c) final lattice for f = (x1 ⊕ x2)(x3 ⊕ x4)
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Figure 5: (a) Lattice implementation of g = y1y3+ y2y4; (b) lattices for y1 = x1⊕x2 and
y2 = x2 ⊕ x5; (c) final lattice for f(x1, x2, x3, x4, x5) = (x1 ⊕ x2)x3 + (x2 ⊕ x5)x4.

of two variables, and y1 and y2 are EXORs of two variables. Then, we can build a
lattice for f (Figure 4(c)) starting from the very simple 2×1 lattice representation
of g (Figure 4(a)), and substituting y1 and y2 with the lattice representations of
(x1 ⊕ x2) and (x3 ⊕ x4), which are shown in Figure 4(b). Note that we need to
insert a row of 1s between the two sublattices, so that we can extend any accepting
path in the sublattice on top, with any accepting path in the bottom sublattice. The
overall lattice for f has size 5× 2. Notice that using the lattice synthesis method
presented in [6] directly on f , we would get a lattice of size 4× 4.

Now, consider the function f(x1, x2, x3, x4, x5) = (x1⊕ x2)x3 + (x2⊕ x5)x4.
Given a lattice for the function g = y1y3+y2y4, we could try to build a lattice for f
by simply substituting the occurrences of y1 and y2 with sublattices for (x1 ⊕ x2)
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Figure 6: (a) Lattice implementation of g = y1 ⊕ y2; (b) lattices for y1 = x1 ⊕ x2 and
y2 = x3 ⊕ x4; (c) final lattice for f(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

and (x2 ⊕ x5), and the occurrences of y3 and y4 with x3 and x4, respectively.
Note that we need to duplicate some variables in order to get a rectangular lattice,
besides inserting a padding column of 0, as shown in Figure 5. Indeed, without the
padding column, the lattice would contain a top-to-bottom path on the assignment
11100, whereas f(1, 1, 1, 0, 0) = 0. As a final example, let us consider the parity
function of 4 variables

f(x1, x2, x3, x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ,

that can be interpreted as f = g(y1, y2) = y1 ⊕ y2, where y1 = x1 ⊕ x2 and
y2 = x3 ⊕ x4. If we derive a lattice for f using this decomposition, we need
to appropriately insert padding rows and columns as depicted in Figure 6: the
padding rows of 1s are needed to join the accepting paths in the sublattices on
top, implementing y1 and y1 with the accepting paths in the bottom sublattices
for y2 and y2; while the column of 0s is needed to avoid intersections between
accepting paths on the left and on the right side of the overall lattices. Without the
column of 0s, the lattice in Figura 6 would contain a top-to-bottom path e.g., on
the input assignment 0110. With the padding rows and columns, the size of the
overall lattice becomes 5 × 5, that is not competitive with the size of an optimal
lattice for the parity of 4 variables, which is 3× 5 [40].

A possible strategy to overcome some of these problems could be a different
lattice composition technique1, that we could call external composition. The

1M. Altun and M. C. Morgul, personal communication, 2017
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Figure 7: Multiple lattice implementation of f(x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

idea is simply to use multiple nanoarrays, i.e., multiple lattices and to connect
the output of a lattice with one or more literals occurring in another lattice as
depicted in Figure 7. Observe that the overall lattice composition in this picture
implements the parity function of 4 variables as a 2 × 2 lattice representing g =
y1 ⊕ y2, connected to two external lattice implementations for y1 = x1 ⊕ x2 and
y2 = x3⊕ x4. In this way, we get a multiple lattice implementation of overall size
12, smaller than an optimal standard lattice for the parity of four variables, whose
size is 15 [40]. As this simple example clearly shows, multiple lattices allow
to reduce the number of switches and thus the overall dimension of the lattice.
However, the gain in the dimension comes at the expense of an increase in the
interconnection cost.

4. Lattice representation of autosymmetric functions

The lattice implementation of autosymmetric functions can be derived exploit-
ing the external lattice composition discussed in the previous Session 3. Recall
from Section 2.2, that a k-autosymmetric function f can be decomposed as

f(x1, . . . , xn) = fk(y1, . . . , yn−k) ,

where (i) the restriction fk depends on n − k binary variables, and has |f |/2k
points only; and (ii) each yi is defined by a reduction equation, i.e., an EXOR
of a subset of the original variables xis: yi = EXOR(Xi), Xi ⊆ {x1, . . . , xn}.
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Figure 8: Multiple lattice implementation of an autosymmetric function: (a) lattice imple-
mentation of the reduction equations; (b) lattice implementation of the restriction fk.

Therefore, we can build a multiple lattice implementing f composing a lattice
L(fk) for the restriction fk with n−k sublattices representing the reduction equa-
tions: for each i, 1 ≤ i ≤ n − k, the output of the sublattice L(yi) implementing
yi is connected, possible through an inverter, to all occurrences of the literal yi in
L(fk) (see Figure 8). Of course, for all variables yj whose associated reduction
equation is a single variable, e.g., xt, there is no need to connect the switch to an
external lattice, but just to xt.

Since fk depends on fewer variables, and has a smaller on-set with respect to
f , its lattice synthesis should be an easier task, and should produce a lattice of
reduced size. Notice that, to further reduce the total area, one could also apply
the decomposition methods presented in [18] and [20] to the lattice for fk. More-
over, the reduction equations are in general EXORs of a very reduced number of
variables and their lattices implementations have limited size. For these reasons,
the overall multiple lattice representing f should be smaller that a standard lattice
for f , derived with the synthesis methods presented in [6] and in [37], and pos-
sibly even smaller than an optimal size lattice for f . This expectation has been
confirmed by our experimental results.
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5. Multiple lattice implementation of D-reducible functions and P-circuits

In this section we discuss the idea of exploiting the external lattice composi-
tion scheme in other contexts, with the aim of deriving multiple lattice implemen-
tations of reduced overall size.

We consider two approaches that have already been studied in previous works
on switching lattice synthesis [18, 20].

5.1. D-reducible functions
First of all, we analyze the lattice synthesis of D-reducible functions. Recall

from [13, 14, 15] that

• a D-reducible function is a function whose on-set minterms are completely
contained in an affine space A strictly smaller than the whole Boolean cube
{0, 1}n;

• a D-reducible function f can be written as f = χA · fA, where A is the
smallest affine space that contains the on-set of f , χA is the characteristic
function of A, and fA is the projection of f onto A;

• f and fA have the same number of points, but the points of the projection
fA are now compacted in a smaller space.

The D-reducibility property of a function f can be exploited in the lattice synthesis
process as proposed in [20]: the idea is to independently find lattice implementa-
tions for the projection fA and for the characteristic function χA of A, and then
to compose them in order to construct the lattice for f , as shown in Figure 9 (a).
Since the two functions fA and χA depend on fewer variables than the original
function f , their synthesis is more feasible and should produce lattice implemen-
tations of more compact area. The experimental results presented in [20] have
validated this approach, demonstrating that (i) the lattice synthesis based on the
D-reducibility property allows to obtain a more compact area in 15% of the con-
sidered cases, with an average gain of about 24%; and (ii) the synthesis time of
the lattices can be reduced of about 50%, with respect to the time needed for the
synthesis of plain lattices.

From Figure 9 (a) we can note that the overall lattice contains the padding row
of 1s, used to join the accepting paths of χA and fA, and some extra columns of 0s
added to the lattice with fewer columns so that the final lattice has a rectangular
shape and the accepting paths for one of the two functions never reach the opposite
edge of the lattice if the other function evaluates to 0. This extra row and columns
could be avoided using the external composition scheme as depicted in Figure 9
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Figure 9: Lattice implementation of a D-reducible function: (a) standard lattice implemen-
tation based on internal composition; (b) multiple lattice implementation.

(b). The main lattice now consists in only one column of two switches, one switch
is connected to the output of an external lattice implementing χA and the other
switch is connected to the output of an external lattice for fA. Since the main
lattice consists in just two switches, we do not need any padding switch between
them, and the lattice evaluates to 1 if and only if both external sublattices evaluate
to 1. The size of the overall lattice is therefore given by 2 plus the sum of the
sizes of the two sublattices, and it is smaller than the size of the lattice in Figure 9
(a) obtained by standard, internal composition. Only in a few cases, e.g., when
the two sublattices for χA and fA have the same number of columns and can be
joined without the row of padding 1s, the internal composition produces a lattice
of smaller area, but just for an additive factor 2.

5.2. P-circuits
In a very similar way, we can use external lattice composition in the lattice

implementation of the bounded-level logic networks called P-circuits [11, 23, 29].
P-circuits are extended forms of Shannon cofactoring, where the expansion is with
respect to an orthogonal basis xi⊕ p (i.e., xi = p), and xi⊕ p (i.e., xi 6= p), where
p is a function defined over all variables except for a critical variable xi (e.g., the
variable with more switching activity or with higher delay that should be projected
away from the rest of the circuit). They can be defined as follows:

P-circuit(f) = (xi ⊕ p) f= + (xi ⊕ p) f 6= + f I

where I is the intersection of the projections of f onto the two sets xi = p and
xi 6= p, and
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Figure 10: Lattice implementation of P-circuits: (a) standard lattice implementation based
on internal composition; (b) multiple lattice implementation.

1. (f |xi=p \ I) ⊆ f= ⊆ f |xi=p
2. (f |xi 6=p \ I) ⊆ f 6= ⊆ f |xi 6=p
3. ∅ ⊆ f I ⊆ I .

Thus, the synthesis idea of P-circuits is to construct a network for f by appropri-
ately choosing the sets f=, f 6=, and f I as building blocks. The same idea can be
exploited in the switching lattice framework: the subfunctions f=, f 6=, and f I de-
pend on n− 1 variables instead of n, they have a smaller on-set than f , and their
lattice synthesis should produce lattices of reduced area. Therefore, the overall
lattice for f , derived composing minimal lattices for f=, f 6=, and f I as shown in
Figure 10 (a), could be smaller than the one derived for f without exploiting its
P-circuits decomposition. This expectation has been confirmed by a set of experi-
mental results, (see [18]) showing that in 30% of the analyzed cases the synthesis
of switching lattices based on the P-circuit decomposition of the logic function
allows to obtain a more compact area in the final resulting lattice, with an average
gain of at least 20%. As before, the lattice obtained by internal composition of the
sublattices for f=, f 6=, and f I , contains padding rows and columns of 1s and 0s,
that could be in part avoided applying the external decomposition scheme depicted
in Figure 10 (b). The main lattice is composed of three columns of two switches.
The first two columns contains switches connected to the output of external lat-
tices implementing the projection function (xi ⊕ p) and the cofactors f= and f 6=;
the last column contains one switch connected to the output of the external lattice
implementing f I , and one switch with constant value 1 used to connect the ac-
cepting path in the lattice for f I to the bottom edge of the main lattice. Observe
that the lattice correctly computes the disjunctions between f I and the projections
of f= and f 6=, without the need for padding columns of 0s. This is due to the
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fact that the lattice contains only two rows, and that each accepting path must
contain at least two switches in the same column, as switches are not connected
diagonally. Also note that the switch with constant value 1 can be replaced with a
second switch connected to f I , at the expense of the interconnection cost, so that
the lattice does not contain switches labelled with constant values.

The overall lattice is therefore composed by a main lattice of size 6, four ex-
ternal sublattices, and one inverter, with an evident gain in the overall area.

6. Experimental results

In this section we report the experimental results obtained applying the mul-
tiple lattice implementation of autosymmetric functions described in Section 4.
Since a k-autosymmetric function fk(y1, . . . , yn−k) depends on fewer variables
w.r.t. the corresponding original function f(x1, . . . , xn), our aim is to obtain lat-
tices of reduced size.

The algorithms have been implemented in C, using the CUDD library for OB-
DDs [17, 22, 30, 39] to represent Boolean functions, and BREL [7] to solve
Boolean relations, as detailed in [28, 29]. The experiments have been run on a
machine with two AMD Opteron 4274HE for a total of 16 CPUs at 2.5GHz and
128GByte of main memory, running Linux CentOS 6.6. The benchmarks are
taken from LGSynth93 [43]. We considered each output as a separate Boolean
function, for a total of 607 functions, including 53 autosymmetric functions on
which we applied the lattice implementation described in the previous sections.

To evaluate the utility of our approach, in Table 1 we compare the lattice syn-
thesis results obtained applying the decomposition scheme based on autosymme-
try, with the results obtained with the standard synthesis methods presented in [6]
and in [37], without exploiting the autosymmetry property. In Table 2 and Table 3
we compare the lattice synthesis results obtained applying the external decom-
position scheme to D-reducible functions and P-circuits, with the corresponding
internal decomposition scheme and the results obtained with the standard synthe-
sis methods presented in [6] and in [37], without exploiting the decomposition
property.

To simulate the results reported in [37], we used a collection of Python scripts
for computing minimum-area switching lattices, by transformation to a series of
SAT problems.

Each row of Table 1 lists the results for each separate autosymmetric output
function of the benchmark circuit. More precisely, the first column reports the
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Table 1: Proposed lattice sizes for autosymmetric benchmark circuits: a comparison of the
proposed method with the results presented in [6] and in [37]. When the synthesis of a
lattice is stopped, there is no lattice (−). Results are marked with ? when SAT is stopped.

#yi
[6] [37]

Std. Synth. Decomposed Synthesis Std. Synth. Decomposed Synthesis
Area fk Area XOR

Area
tot. Area inv. Area time fk Area fk

Time
XOR
Area

XOR Time tot. Area tot.
time

inv.

add6(0) 1 4 1 4 5 0 4 0.021 1 0.028 4 0.024 5 0.052 0
add6(1) 1 36 9 4 14 1 15 2.561 9 0.019 4 0.028 14 0.047 1
add6(2) 1 256 64 4 69 1 - - 15 124 4 0.026 20 0.026 1
add6(3) 1 1296 324 4 329 1 - - - - 4 0.029 329? 0.029 1
add6(4) 1 5776 1444 4 1449 1 - - - - 4 0.035 1449? 0.035 1
add6(5) 1 24336 6084 4 6089 1 - - - - 4 0.026 6089? 0.26 1
adr4(1) 1 345 324 4 329 1 - - - - 4 0.025 329? 0.025 1
adr4(2) 1 1296 64 4 69 1 - - - - 4 0.027 20? 0.027 1
adr4(3) 1 256 9 4 14 1 15 2.57 9 0.019 4 0.026 14 0.045 1
adr4(4) 1 36 1 4 5 0 - - 1 0.026 4 0.031 5 0.026 0
al2(11) 1 125 60 4 64 0 - - - - 4 0.021 64? 0.057 0
alcom(5) 1 12 6 4 10 0 12 0.028 6 0.025 4 0.3 10 0.325 0
b11(5) 1 6 2 4 6 0 6 0.023 2 0.025 4 0.025 6 0.05 0
b12(6) 1 54 35 4 39 0 20 918 20 1350 4 0.027 24 1350 0
dekoder(0) 1 8 3 4 7 0 8 0.027 3 0.024 4 0.022 7 0.046 0
dekoder(1) 1 6 2 4 6 0 6 0.024 2 0.023 4 0.023 6 0.046 0
dk27(8) 1 1 1 4 5 0 1 0.021 1 0.026 4 0.024 5 0.05 0
exps(18) 3 16 7 12 19 0 12 22.2 7 0.027 12 0.067 19 0.094 0
exps(19) 6 16 7 24 31 0 16 0.03 7 0.024 24 0.137 31 0.161 0
f51m(6) 1 4 1 4 5 0 4 0.03 1 0.025 4 0.026 5 0.051 0
luc(3) 1 16 9 4 13 0 12 0.861 9 0.024 4 0.031 13 0.055 0
m1(8) 1 15 8 4 12 0 12 1.65 8 0.333 4 0.024 12 0.357 0
max1024(0) 8 56 14 32 46 0 - - 14 1.16 32 0.202 46 116 0
max1024(1) 8 324 81 32 119 6 324 0.034 24 2543 32 0.198 63 2543 7
max1024(2) 9 1216 304 36 348 8 - - 304 0.036 36 0.23 348 0.266 8
max1024(3) 9 3072 800 36 844 8 3072 0.133 - - 36 0.22 844? 0.22 8
max1024(4) 9 6806 1978 36 2023 9 6806 0.23 1978 0.07 36 0.218 2023 0.288 9
max1024(5) 9 14274 3968 36 4013 9 - - - - 36 0.221 4013? 0.221 9
newcond(1) 2 8 3 8 11 0 8 0.244 3 0.023 8 0.051 11 0.074 0
newcwp(0) 2 20 6 8 15 1 12 0.521 6 0.023 8 0.053 15 0.076 1
newcwp(1) 1 16 1 12 13 0 9 0.303 1 0.025 9 0.281 10 0.306 0
newcwp(3) 2 4 1 4 5 0 4 0.022 1 0.021 4 0.027 5 0.048 0
p82(10) 2 10 4 4 8 0 8 0.106 4 0.021 4 0.025 8 0.046 0
pope.rom(18) 3 12 5 12 17 0 10 1.45 5 0.025 12 0.07 17 0.095 0
pope.rom(32) 1 8 3 4 7 0 6 0.086 3 0.027 4 0.028 7 0.055 0
pope.rom(34) 1 8 3 4 7 0 8 1806 3 0.023 4 0.019 7 0.042 0
pope.rom(35) 1 6 2 8 10 0 6 0.077 2 0.025 8 0.05 10 0.075 0
pope.rom(41) 1 10 4 4 8 0 10 0.022 4 0.031 4 0.023 8 0.054 0
radd(0) 1 4 1 4 5 0 4 0.025 1 0.021 4 0.026 5 0.047 0
radd(1) 1 36 9 4 14 1 15 2.45 9 0.026 4 0.027 14 0.053 1
radd(2) 1 256 64 4 69 1 - - 15 122.1 4 0.025 20 122 1
radd(3) 1 1296 324 4 329 1 - - - - 4 0.024 329? 0.024 1
rd53(1) 4 100 30 16 50 4 - - 12 0.676 16 0.118 32 0.794 4
rd53(2) 1 256 1 80 81 0 - - 1 0.022 - - 81? 0.022 0
rd73(2) 1 1225 1 448 449 0 - - 1 0.023 - - 449? 0.023 0
risc(4) 1 6 2 4 6 0 6 0.026 2 0.027 4 0.02 6 0.047 0
sqn(0) 2 272 49 8 58 1 - - 15 11 8 0.049 24 11.5 1
wim(2) 1 6 2 4 6 0 6 0.026 2 0.023 4 0.019 6 0.042 0
z4(1) 5 784 64 28 97 5 784 11.34 15 115 25 0.412 45 115 5
z4(2) 3 144 9 20 32 3 - - 9 0.021 17 0.341 29 0.362 3
z4(3) 1 16 1 12 13 0 9 0.29 1 0.027 9 0.286 10 0.313 0
z5xp1(8) 1 4 1 4 5 0 4 0.027 1 0.019 4 0.026 5 0.045 0
z9sym(0) 8 6192 2016 32 2056 8 - - - - 32 0.217 2056? 0.276 8
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Table 2: Proposed lattice sizes for standard benchmark circuits: a comparison of the pro-
posed external D-reducible decomposition method with the results presented in [20], [6]
and [37]. When the synthesis of a lattice is stopped, there is no lattice (−). Results are
marked with ? when SAT is stopped.

[6] [37]
Std. synthesis Internal Decomp. External Decomp. Std. synthesis Internal Decomp. External Decomp.
X×Y Area X×Y Area χ fA cost Area X×Y Area X×Y Area χ fA cost Area

addm4(0) 9×12 180 9×15 135 1×3 9×12 2 113 - - 3×8 24 1×3 3×5 2 20
addm4(1) 22×23 506 22×23 506 1×1 22×22 1 486 - - 22×23 506? 1×1 22×22 1 486?
addm4(2) 33×36 1180 33×36 1188 1×1 33×35 1 1157 - - 33×36 1188? 1×1 33×35 1 1157?
adr4(4) 2×2 4 2×2 4 2×3 1×0 0 6 2×2 4 2×5 10 2×5 0×0 0 10
alu2(6) 4×4 16 4×5 20 1×1 4×4 1 18 3×4 12 4×4 16 1×1 4×3 1 14
amd(3) 6×8 48 6×9 54 1×1 6×8 1 50 4×5 20 3×7 21 1×1 3×6 1 20
amd(4) 10×14 140 10×14 140 1×1 10×13 1 132 - - 10×14 140? 1×1 10×13 1 132?
amd(5) 2×8 16 2×9 18 2×6 2×2 2 18 6×2 12 2×8 16 2×6 2×2 2 18
amd(6) 3×9 27 3×14 42 1×5 3×9 2 34 6×3 18 3×8 24 1×5 3×3 2 16
amd(7) 6×7 42 6×8 48 1×1 6×7 1 44 4×5 20 3×6 18 1×1 3×5 1 17
apla(0) 4×13 52 4×13 52 1×3 4×10 2 45 6×3 30 5×6 30 1×3 5×3 2 20
apla(1) 4×12 48 4×12 48 1×3 4×9 2 41 6×3 18 4×6 24 1×3 4×3 2 17
apla(2) 3×6 18 5×18 90 1×2 5×16 2 84 5×2 10 4×4 16 1×2 4×2 2 12
apla(7) 5×10 50 6×12 72 1×2 6×10 2 64 - - 4×6 24 1×2 4×4 2 20
apla(9) 5×15 75 6×22 132 1×2 6×20 2 124 - - 5×6 30 1×2 5×4 2 24
b10(2) 10×14 140 10×19 190 1×5 10×14 2 147 - - 10×14 140? 1×5 10×9 2 97?
br1(3) 2×12 24 2×13 26 2×13 2×1 2 30 - - 2×12 24 2×11 2×1 2 26
br1(4) 6×15 90 6×20 120 1×5 6×15 2 97 - - 5×9 45 1×5 5×4 2 27
br2(4) 8×18 144 8×20 160 1×2 8×18 2 148 - - 8×18 144? 1×2 8×16 2 132?
br2(5) 4×14 56 8×16 128 2×9 4×6 2 44 - - 4×21 84? 2×17 4×3 2 48?
br2(6) 5×16 80 5×17 85 2×7 5×9 2 61 - - 4×12 48? 2×7 4×4 2 32?
dk48(2) 2×13 26 2×22 44 1×9 2×13 2 37 - - 2×13 26? 1×9 2×4 2 19?
dk48(3) 2×13 26 4×17 68 2×15 1×0 0 30 - - 2×15 30? 2×15 0×0 0 30?
exam(4) 9×25 225 11×22 242 1×2 11×20 2 224 - - 9×20 180? 1×2 9×18 2 166?
exp(6) 6×7 42 8×12 96 1×2 8×10 2 84 5×4 20 3×7 21 1×2 3×5 2 19
exp(10) 6×12 72 6×15 90 1×2 6×13 2 82 - - 5×6 30 1×2 5×4 2 24
exp(11) 6×12 72 5×12 60 2×4 5×7 2 45 - - 5×8 40 2×4 5×3 2 25
gary(2) 12×14 168 12×15 180 2×3 12×12 2 152 - - 12×18 216? 2×5 12×12 2 156?
gary(3) 5×12 60 5×14 70 1×2 5×12 2 64 - - 5×12 60 1×2 5×10 2 54
in2(6) 39×36 1404 39×38 1482 1×2 39×36 2 1408 - - 39×35 1365? 1×2 39×33 2 1291?
in2(7) 17×26 442 17×27 459 1×1 17×26 1 444 - - 17×26 442? 1×1 17×25 1 427?
in2(8) 27×31 837 27×32 864 1×1 27×31 1 839 - - 27×31 837? 1×1 27×30 1 812?
in2(9) 40×36 1440 40×37 1480 1×1 40×36 1 1442 - - 40×36 1440? 1×1 40×35 1 1402?
in7(6) 11×18 198 11×21 231 1×3 11×18 2 203 - - 11×18 198? 1×3 11×15 2 170?
m2(6) 10×13 130 10×14 140 1×1 10×13 1 132 - - 10×13 130? 1×1 10×12 1 122?
m2(7) 14×14 196 14×15 210 1×1 14×14 1 198 - - 14×14 196? 1×1 14×13 1 184?
m2(12) 6×11 66 6×13 78 1×2 6×11 2 70 5×4 20 4×6 24 1×2 4×4 2 20
m2(13) 9×12 108 9×14 126 1×2 9×12 2 112 - - 4×8 32 1×2 4×6 2 28
m2(15) 16×18 288 17×19 323 1×1 17×18 1 308 - - 16×18 288? 1×1 16×17 1 274?
m4(9) 4×7 28 4×10 40 1×3 4×7 2 33 5×3 15 4×6 24 1×3 4×3 2 17
m4(10) 7×7 49 7×9 63 1×2 7×7 2 53 7×7 49 3×8 24 1×2 3×6 2 22
max128(3) 6×6 36 5×7 35 2×3 5×4 2 28 3×6 18 3×11 33 2×5 3×5 2 27
newapla1(6) 5×6 30 5×11 55 1×5 5×6 2 37 - - 5×6 30 1×5 5×1 2 12
newapla(0) 4×6 24 4×7 28 1×1 4×6 1 26 3×6 18 3×7 21 1×1 3×6 1 20
newcpla1(6) 6×11 66 6×13 78 1×2 6×11 2 70 - - 4×6 24 1×2 4×4 2 20
newcpla1(7) 7×6 42 7×7 49 1×1 7×6 1 44 4×5 20 3×6 18 1×1 3×5 1 17
newcpla1(8) 7×12 84 7×15 105 1×3 7×12 2 89 - - 5×7 35 1×3 5×4 2 25
newtpla1(1) 2×9 18 2×15 30 1×6 2×9 2 26 2×9 18 2×9 18 1×6 2×3 2 14
newtpla2(2) 2×9 18 2×17 34 1×8 2×9 2 28 2×9 18 2×9 18 1×8 2×1 2 12
newtpla(6) 3×12 36 3×16 48 1×4 3×12 2 42 - - 6×7 42 1×4 6×3 2 24
newtpla(9) 2×7 14 2×13 26 1×6 2×7 2 22 6×2 12 2×7 14 1×6 2×1 2 10
newxcpla1(1) 7×6 42 7×7 49 1×1 7×6 1 44 3×6 18 3×6 18 1×1 3×5 1 17
p1(2) 3×6 18 7×10 70 2×6 7×4 2 42 4×3 12 2×9 18 2×5 2×3 2 18
p1(11) 6×9 54 5×12 60 2×4 5×7 2 45 3×5 15 5×8 40 2×4 5×3 2 25
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Table 3: Proposed lattice sizes for standard benchmark circuits: a comparison of the pro-
posed external P-circuit decomposition method with the results presented in [18], [6] and
[37]. When the synthesis of a lattice is stopped, there is no lattice (−). Results are marked
with ? when SAT is stopped.

[6] [37]
Std. synthesis Internal Decomp. External Decomp. Std. synthesis Internal Decomp. External Decomp.
X×Y Area X×Y Area Af= Af 6= AfI cost Area X×Y Area X×Y Area Af= Af 6= AfI cost Area

adr4(1) 36×36 1296 37×19 703 324 324 0 5 653 − 37×19 703? 324? 324 0 5 653?
alu2(2) 11×10 110 13×7 91 6 5 56 7 74 7 × 3 21 10×6 60 6 5 15 7 33
alu2(5) 14×13 182 16×10 160 8 6 110 7 131 − 16×10 160? 8 6 110 7 131?
alu3(0) 5×4 20 7×4 28 2 3 4 7 16 3 × 3 9 7×4 28 2 3 4 7 16
alu3(1) 8×7 56 10×5 50 4 4 20 7 35 5 × 3 15 8×5 40 4 4 9 7 24
alu3(2) 10×11 110 12×8 96 4 8 56 7 75 6 × 4 24 11×5 55? 4 8 18 7 37?

b12(0) 4×6 24 4×6 24 20 0 0 3 23 3 × 4 12 3×4 12? 9 0 0 3 12?
b12(1) 7×5 35 7×5 35 28 0 0 3 31 4 × 4 16 4×4 16? 12 0 0 3 15?
bcc(5) 9×27 243 9×26 234 225 0 0 3 228 − 9×26 234? 225 0 0 3 228?
bcc(7) 11×31 341 12×29 348 280 10 0 5 295 − 12×29 348? 280 10 0 5 295?
bcc(8) 12×31 372 13×29 377 308 10 0 5 323 − 13×29 377? 308 10 0 5 323?
bcc(12) 11×31 341 11×30 330 319 0 0 3 322 − 11×30 330? 319 0 0 3 322?
bcc(27) 19×39 741 20×33 660 416 90 0 5 511 − 20×33 660? 416 90 0 5 511?
bcc(43) 10×20 200 11×16 176 78 60 0 5 143 − 11×16 176? 78 60 0 5 143?
bcd.div3(1) 3×4 12 5×4 20 3 1 2 7 13 3 × 3 9 5×4 20 3 1 2 7 13
bcd.div3(2) 3×4 12 5×4 20 3 1 3 7 14 3 × 3 9 5×4 20 3 1 3 7 14
bcd.div3(3) 3×5 15 4×4 16 6 0 3 5 14 3 × 4 12 4×4 16? 6 0 3 5 14?

bench1(2) 24×45 1080 33×29 957 350 504 0 5 859 − 33×29 957? 350 504 0 5 859?
bench1(3) 16×31 496 20×18 360 104 136 14 7 261 − 21×18 378? 104 136 12 7 259?
bench1(5) 27×50 1350 32×28 896 128 78 448 7 661 − 32×28 896? 128 78 448 7 661?
bench1(6) 21×35 735 26×24 624 160 345 0 5 510 − 26×24 624? 160 345 0 5 510?
bench1(7) 21×43 903 27×20 540 247 190 14 7 458 − 27×20 540? 247 190 10 7 454?
bench1(8) 24×44 1056 31×26 806 375 345 0 5 725 − 31×26 806? 375 345 0 5 725?
bench(6) 4×8 32 6×3 18 2 2 6 7 17 3 × 4 12 6×3 18 2 2 6 7 17
br2(4) 8×18 144 8×18 144 0 136 0 2 138 − 8×18 144? 0 136 0 2 138?
br2(5) 4×14 56 4×14 56 0 52 0 2 54 − 4×14 56? 0 52 0 2 54?
br2(6) 5×16 80 5×16 80 0 75 0 2 77 − 5×16 80? 0 75 0 2 77?
clpl(2) 2×2 4 3×2 6 0 1 4 4 6 2 × 2 4 3×2 6? 0 1 1 4 6?

clpl(3) 6×6 36 9×6 54 1 10 20 6 37 6 × 3 18 9×6 54? 1 10 12 7 30?

clpl(4) 5×5 25 8×5 40 1 8 12 6 27 5 × 3 15 8×5 40? 1 8 9 7 25?

co14(0) 14×92 1288 15×80 1200 1027 13 0 5 1045 − 15×80 1200? 1027 13 0 5 1045
dc1(0) 4×4 16 5×4 20 9 2 0 5 16 3 × 3 9 4×4 16? 6 2 0 5 13?

dc1(1) 2×3 6 3×3 9 2 0 3 5 10 2 × 3 6 3×3 9? 2 0 3 5 10?
dc1(4) 4×5 20 5×4 20 9 0 3 5 17 3 × 4 12 5×4 20? 9 0 3 5 17?

dc1(6) 3×3 9 4×2 8 2 0 2 5 9 3 × 2 6 4×2 8? 2 0 2 5 9?

dc2(4) 9×10 90 10×9 90 48 18 0 5 71 4 × 5 20 8×5 40? 16 12 0 5 33?

dc2(5) 6×6 36 7×7 49 12 18 0 5 35 2 × 6 12 5×6 30? 8 10 0 5 23?

dk17(0) 2×8 16 4×4 16 6 2 0 5 13 2 × 6 12 4×4 16? 6 2 0 5 13?

dk17(1) 2×8 16 4×4 16 6 2 0 5 13 2 × 6 12 4×4 16? 6 2 0 5 13?
dk17(3) 3×11 33 4×7 28 0 0 28 0 28 2 × 7 14 6×3 18? 0 0 18 0 18?

dk17(4) 3×9 27 6×4 24 3 2 6 7 18 2 × 7 14 6×4 24 3 2 6 0 18
dk17(6) 1×3 3 1×3 3 0 0 3 0 3 1 × 3 3 1×3 3? 0 0 3 0 3?
exp(4) 6×17 102 6×17 102 0 0 102 0 104 − 6×17 102? 0 0 102 0 102?
exp(5) 45×35 1575 45×35 1575 0 0 1575 0 1577 − 45×35 1575? 0 0 1575 0 1575?
exp(32) 10×4 40 13×3 39 10 8 4 7 29 6 × 4 24 13×3 39 10 8 4 7 29
exp(33) 7×3 21 7×3 21 0 1 15 4 20 − 7×3 21? 0 1 15 4 20?
exp(34) 10×4 40 12×5 60 2 4 30 7 43 6 × 4 24 11×3 33 2 4 15 7 28
exp(36) 8×2 16 10×2 20 1 1 12 6 20 8 × 2 16 10×2 20 1 1 12 7 21
exp(38) 9×4 36 13×3 39 12 8 1 6 28 7 × 4 24 13×3 39 12 8 1 7 28
exp(39) 8×2 16 11×3 33 1 8 8 6 23 − 11×3 33 1 8 8 7 24
exp(40) 12×6 72 15×5 75 16 18 12 7 53 − 13×4 52 8 12 9 7 36
exp(43) 14×8 112 17×6 102 36 35 0 5 76 − 13×4 52? 18 18 0 5 41?
exam(5) 6×11 66 7×6 42 4 0 30 5 39 − 6×5 30? 4 0 16 5 25?
exam(9) 30×59 1770 38×30 1140 754 143 0 5 902 − 33×30 990? 754 24 0 5 783?
max128(5) 17×14 238 19×9 171 16 80 21 7 124 − 14×5 70 9 24 12 7 52
max128(8) 10×5 50 11×4 44 18 8 0 5 31 − 10×4 40? 15 8 0 5 28?

max128(17) 25×26 650 26×15 390 144 182 0 5 331 − 26×15 390? 144 182 0 5 331?
mp2d(6) 6×10 60 6×10 60 0 54 0 2 56 − 3×7 21? 0 18 0 2 20?
mp2d(9) 8×6 48 9×6 54 0 15 5 4 24 − 9×4 36? 0 9 5 4 18?
mp2d(10) 3×6 18 4×5 20 8 4 0 5 17 3 × 4 12 4×5 20? 8 4 0 5 17?

z4(0) 15×15 225 16×11 176 0 24 77 4 105 4 × 5 20 6×6 36? 0 10 12 4 26?

z4(1) 28×28 784 30×16 480 32 32 192 7 263 − 10×7 70 12 12 24 7 55
Z5×p1(2) 11×12 132 13×7 91 12 36 8 7 63 − 11×5 55? 12 16 8 7 43?
Z5×p1(3) 18×18 324 19×11 209 80 80 0 5 165 − 10×6 60? 20 20 0 5 45?
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name and the number of the considered output of each instance; the second col-
umn reports the number of EXOR lattices used to implement the reduction equa-
tions (yj) when the decomposition method is applied. The following five columns
refer to the synthesis of lattices as described in [6], with (columns 4-7) and without
(column 3) the multiple lattice decomposition based on autosymmetry. In partic-
ular, column 3 shows the area of lattices derived applying the standard synthesis
method (i.e., without exploiting the autosymmetry property), column 4 shows the
area of the lattice for the restriction fk, column 5 shows the total area of the lat-
tices for the EXOR terms yi, column 6 shows the total area occupied by lattices
(TotalArea = Afk +

∑
iAyi + num.inv), and column 7 indicates the number

num.inv of inverters necessary to make the signal routing. The synthesis in [6]
is performed using ESPRESSO, and in all cases it takes less than 0.01 s, that is the
minimum time resolution of the synthesizer; for this reason the synthesis time is
omitted.

Columns 8 to 16 refer to lattices synthesized using the methodology pre-
sented in [37], with and without decomposition on multiple lattices. In particular
columns 8 and 9 report the area and the synthesis time of lattices obtained with
standard synthesis; columns 10 and 11 report the area and the synthesis time of
the lattice for the restriction fk, column 12 and 13 report the total area of the lat-
tices for the EXOR terms yi and their synthesis time; columns 14 and 15 show the
total area occupied by lattices (TotalArea = Afk +

∑
iAyi + num.inv) and the

total synthesis time; finally, column 16 indicates the number num.inv of inverter
necessary for signal routing.

For each function, we bolded the best areas (col. 3 vs col. 5 vs col. 6 and col.
8 vs col. 14) and the best total time (col. 9 vs col.15).

Each row of Table 2 lists the results for each separate D-reducible output func-
tion of the benchmark circuits. More precisely, the first column reports the name
and the number of the considered output of each instance; The following two
columns refer to the synthesis of lattices as described in [6], without lattice decom-
position (columns 2-3), with internal decomposition (column 4-5), and external
decomposition (column 6-9). In particular, columns 2-3 show the dimension and
the area of lattices derived applying the standard synthesis method (i.e., without
exploiting the D-reducibility property), columns 4-5 show the dimension and the
area of the lattice obtained applying the internal decomposition method, column 6
shows the dimension of χ, column 7 shows the dimension of the lattice of fA, col-
umn 8 shows the cost in term of lattice area due to external decomposition, column
9 shows the total area occupied by lattices (TotalArea = Aχ + AfA + cost).

Columns 10 to 17 of Table 2 refer to lattices synthesized using the methodol-
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ogy presented in [37], the content refers to the same lattice as columns 2-9.
For each function, we bolded the best areas (col. 3 vs col. 5 vs col. 9 and col.

11 vs col. 13 vs col. 17).
Each row of Table 3 lists the results for each separate output function, repre-

sented as a P-circuit, of the benchmark circuits. More precisely, the first column
reports the name and the number of the considered output of each instance. The
following two columns refer to the synthesis of lattices as described in [6], without
lattice decomposition (columns 2-3), with internal decomposition (column 4-5),
and external decomposition (column 6-10). In particular, columns 2-3 show the
dimension and the area of lattices derived applying the standard synthesis method
(i.e., without exploiting the P-circuit decomposition), columns 4-5 show the di-
mension and the area of the lattice obtained applying the internal decomposition
method, column 6 shows the dimension of the lattice of the projection f=, column
7 shows the dimension of the lattice of the projection f 6=, column 8 shows the di-
mension of the lattice of the intersection f I , column 9 shows the cost in term of
lattice area due to external decomposition, and column 10 reports the total area
occupied by lattices (TotalArea = Af= + Af 6= + AfI + cost).

Columns 11 to 19 of Table 3 refer to lattices synthesized using the methodol-
ogy presented in [37], the content refers to the same lattice as columns 2-10.

For each function, we bolded the best areas (col. 3 vs col. 5 vs col. 10 and
col. 12 vs col. 14 vs col. 19).

In some cases the method proposed in [37] fails in computing a result in rea-
sonable run time. For this reason, we set a time limit (equal to ten minutes) for
each SAT execution; if we do not find a solution within the time limit, the syn-
thesis is stopped. We marked with − all cases where the synthesis of lattices has
been stopped. In the synthesis of sublattices, whenever [37] is stopped, we use
the sublattices synthesized with [6], because without a sublattice it would be im-
possible to complete the synthesis of the overall decomposed lattice. We marked
these cases with ?. Note that, for many benchmarks, the method in [37] did not
find a solution within the fixed time limit for at least one sublattice, and had to be
replaced with [6].

The results are promising. Considering the methodology presented in [6], for
the class of autosymmetric functions (see Table 1) we obtain a smaller total area
w.r.t. the standard synthesized lattices in 58% of the benchmarks, with an average
gain of 53%. Considering the methodology presented in [37], we obtain a smaller
total area in 48% of the benchmarks, with an average gain of 60%. Note that in
many cases the synthesis time necessary to decompose the function as described
in this paper (column 15 in Table 1) is smaller than the time necessary to perform
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Table 4: Comparison between external decomposition method with not decomposed lattice and
internal decomposed lattice

Decomposition method Not-decomposed lattices Lattice with internal decomposition
less area area gain less area area gain

D-reducible [6] 16% 9% 78% 9%
[37] 54% 9% 75% 6%

P-circuit [6] 54% 36% 93% 15%
[37] 60% 39% 93% 17%

Autosymmetric [6] 58% 53% – –
[37] 48% 60% – –

the standard synthesis (column 9 in Table 1).
As for external vs internal decomposition, we report in Table 4 the overall re-

sults concerning the external decomposition applied to all different decomposition
methods with respect to standard synthesized lattices and internal decomposition.
In this table, each row is referred to a different decomposition method. Column
2 shows the synthesis method used for the experiment, columns 3 and 4 show the
percentage of lattices with less area and how much area is gained with respect to
not-decomposed lattice, columns 5 and 6 show the percentage of lattices with less
area and how much area is gained with respect to internal decomposed lattices.
These results clearly show how the use of multiple lattices often allows to reduce
the number of switches and thus the overall dimension of the lattice, even if the
gain in the dimension comes at the expense of an increase in the interconnection
cost.

7. Conclusions

In this paper we have shown a lattice minimization strategy for autosymmet-
ric function. We have described how to exploit an external composition for au-
tosymmetric functions in order to get compact area representation with switching
lattices. We have also proposed the application of the external composition tech-
nique to the synthesis on switching lattices of D-reducible Boolean functions, and
to the more general framework of lattice synthesis based on logic function de-
composition, focusing in particular on the P-circuit decomposition model. The
experimental results have validated the approach.

As future work, it would be interesting to study other classes of regular func-
tions, for instance symmetric and partially symmetric functions. Another interest-
ing future direction is the study of a different strategy to compose the switching
lattices in order to obtain more compact solutions.
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