Student ID:

Date: 07/10/2016

BLG231E Digital Circuits
 Quiz 1

Duration: 20 Minutes
Grading: 1) 20%, 2) 80%,
Quiz is in closed-notes and closed-books format
For your answers please use the space provided in the exam sheet
GOOD LUCK!

1. Answer the following statements with T (true) or F (false) only.
(do not guess: points are deducted for wrong answers. If you do not know the answer, leave it blank)
a) \qquad Finite decimal fraction can be always converted to finite binary fraction
b) \qquad Finite hexadecimal fraction can be always converted to finite binary fraction
c) \qquad (The population of Burundi was 10.16 million in 2013) NOR (sweet corn is tastier than apple)
d) \qquad A circuit performing a binary addition of two n-bit numbers needs n outputs.
e) \qquad A circuit performing a binary multiplication of two n-bit numbers needs $2 n$ outputs.
2. Consider the below two circuits having three inputs $x 1$, $x 2$, and $x 3$ as well as 0 and 1 inputs. The one consisting of NAND2 gates has an output OUT 1 and the other one having NOR2 gates has an output OUT 2.

a) Derive Boolean expressions of OUT 1 and OUT 2 in terms of the Boolean variables x 1 , x 2 , and x 3 . Try to simplify them.
b) Derive truth tables of these two expressions obtained in a).
c) What is the result of (OUT 1) $+(\text { OUT } 2)^{\prime}$?
