Student ID:

Date: 29/11/2012

EHB262E Electronics II, Fall 2012 MIDTERM

Duration: 75 Minutes
Grading: 1) 20% (4% each), 2) 40%, 3) $40 \% ~(20 \%+20 \%)$
Exam is in closed-notes and closed-books format
For your answers please use the space provided in the exam sheet
GOOD LUCK!

1) Please circle TRUE if you think that the statement is true; FALSE otherwise.
a. While obtaining the small signal gain of an amplifier, all dependent voltage sources should be shorted.
TRUE / FALSE
b. If a voltage amplifier has a 1 Volt DC input and a 3 Volt DC output values then the small signal gain of the amplifier is $3(3 \mathrm{~V} / 1 \mathrm{~V})$.
TRUE / FALSE
c. In analog circuits, MOS transistors are preferably operating in triode (linear) region.
TRUE / FALSE
d. Consider two voltage amplifiers with small signal gains of A and B and infinite small signal input resistances. Cascading them results in an amplifier with a small signal gain of $A \times B$.
TRUE / FALSE
e. Consider a current amplifier with a small signal gain of 100 and a small signal output resistance of $3 \mathrm{k} \Omega$. If this amplifier drives a load resistance of $1 \mathrm{k} \Omega$ then the gain of the amplifier reduces to 75 .
TRUE / FALSE
2) You are asked to design an amplifier satisfying the following specifications: $\mathbf{r}_{\text {in }} \geq \mathbf{2 0 0}$ $\mathbf{k} \boldsymbol{\Omega}$ and $\left|\boldsymbol{v}_{\text {out }} / \boldsymbol{v}_{\text {in }}\right| \geq \mathbf{1 0}$. Use the amplifier shown below and determine the minimum values of $\boldsymbol{R}_{\boldsymbol{E}}$ and \boldsymbol{R}_{C} to meet the specifications where $\boldsymbol{V}_{\boldsymbol{B}}=\mathbf{0 . 9 5 V}$.

Transistor parameters: $V_{B E}=0.7, \beta=100, V_{A}=100 \mathrm{~V}, V_{T}=25 \mathrm{mV}$.

Common Emitter Amplifier with an Emitter Resistance
3) Suppose that $\boldsymbol{V}_{\boldsymbol{B}}=\mathbf{1 . 5 V}$ and all NMOS/PMOS transistors are identical. In DC analysis, use the following equation:

$$
I_{D}=\frac{1}{2} k_{p, n}^{\prime} \frac{W}{L}\left(V_{G S}-V_{T 0 p, n}\right)^{2} .
$$

Transistor parameters: $k_{p}{ }^{\prime}=\mu_{p} c_{o x}=50 \mathrm{uA} / \mathrm{V}^{2}, k_{n}{ }^{\prime}=\mu_{n} c_{o x}=100 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{An}}=\mathrm{V}_{\mathrm{Ap}}=100 \mathrm{~V}$, $\mathrm{V}_{\mathrm{T} 0, \mathrm{p}}=-1 \mathrm{~V}, \mathrm{~V}_{\mathrm{T} 0, \mathrm{n}}=1 \mathrm{~V}, \mathrm{~W}_{\mathrm{P}}=16 \mathrm{u}, \mathrm{L}_{\mathrm{P}}=1 \mathrm{u}, \mathrm{W}_{\mathrm{n}}=8 \mathrm{u}, \mathrm{L}_{\mathrm{n}}=1 \mathrm{u}$,.
a. Determine the small signal gain $v_{\text {out }} / v_{\text {in }}$ and the small signal output resistance $\boldsymbol{r}_{\text {out }}$ of the amplifier shown below.

Common Source Amplifier
b. Determine the small signal gain $\boldsymbol{v}_{\text {out }} / \boldsymbol{v}_{\text {in }}$ of the cascaded amplifier shown below.

Two-stage (Cascaded) Amplifier

