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CMOS Implementation of Switching Lattices
Ismail Cevik, Levent Aksoy, and Mustafa Altun

Abstract—Switching lattices consisting of four-terminal
switches are introduced as area-efficient structures to realize logic
functions. Many optimization algorithms have been proposed,
including exact ones, realizing logic functions on lattices with the
fewest number of four-terminal switches, as well as heuristic ones.
Hence, the computing potential of switching lattices has been
justified adequately in the literature. However, the same thing
cannot be said for their physical implementation. There have been
conceptual ideas for the technology development of switching
lattices, but no concrete and directly applicable technology has
been proposed yet. In this study, we show that switching lattices
can be directly and efficiently implemented using a standard
CMOS process. To realize a given logic function on a switching
lattice, we propose static and dynamic logic solutions. The
proposed circuits as well as the compared conventional ones are
designed and simulated in the Cadence environment using TSMC
65nm CMOS process. Experimental post layout results on logic
functions show that switching lattices occupy much smaller area
than those of the conventional CMOS implementations, while
they have competitive delay and power consumption values.

Index Terms—switching lattice, four-terminal switch, psuedo
NMOS logic, dynamic logic, 65nm CMOS technology.

I. INTRODUCTION

A switching lattice, formed as a two dimensional network
of four-terminal switches, is introduced as a crossbar based,
regular, dense, and area-efficient structure for logic comput-
ing [1]. A four-terminal switch, corresponding to a crossbar
cross-point, has one control input x and four terminals. As
shown in Fig. 1(a), all of its terminals are either disconnected
(OFF), if its control input has the value 0 or connected (ON),
otherwise. A 3 × 3 switching lattice is shown in Fig. 1(b),
where x1 . . . x9 denote the control inputs of switches. The
logic function for the lattice evaluates to 1 if there is a path
between the top and bottom plates of the lattice, so it can be
found by taking the sum of the products (SOP) of the control
inputs along each path. Fig. 1(c) shows the logic function f3×3

for the lattice given in Fig. 1(b).
In order to implement a target logic function, literals of

the function as well as constant logic values (0 and 1) are
mapped to the control inputs of switches such that the lattice
and target functions are equal to each other. Here, the main
goal is finding the minimum lattice size, i.e., the minimum
number of four-terminal switches. To achieve this goal, many
different algorithms have been introduced [1]–[9].

To compare the realization of a logic function in terms
of the number of two-terminal and four-terminal switches,
consider f(a, b, c, d) = abc + abc + acd + acd in SOP
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Fig. 1. (a) four-terminal switch; (b) 3×3 switching lattice; (c) 3×3 switching
lattice function.
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Fig. 2. Different realizations for f = abc + abc + acd + acd: (a) two-
level synthesis using two-terminal switches (MOS transistors); (b) multi-
level synthesis aiming to minimize the number of two-terminal switches;
(c) JANUS [8] aiming to minimize the number of four-terminal switches.

form as an example. This function can be realized using
AND and OR gates as shown in Fig. 2(a). Note that this
straight-forward implementation requires 42 MOS transistors,
i.e., two-terminal switches, without counting the ones for the
inverters of primary inputs. However, the number of MOS
transistors can be reduced further by applying a state-of-art
logic synthesis tool to the logic function with a number of
synthesis scripts. Fig. 2(b) presents an optimized solution with
24 MOS transistors, not counting the ones for the inverters of
primary inputs. On the other hand, as shown in Fig. 2(c), our
logic function can be realized using a 3 × 3 lattice, which
requires 9 four-terminal switches, found using the publicly
available algorithm of [8], called JANUS in the paper.

This example, supported by many other inspiring exam-
ples and results in the literature [1]–[9], clearly shows the
computing potential of switching lattices as well as their
area efficiency. However, no concrete and directly applicable
technology has been yet proposed for the implementation of
switching lattices. In [1], physical formations of nanowire and
magnetic four-terminal switches are conceptually given, but
they lack details on simulation and fabrication. By using three
dimensional (3D) technology computer-aided design (TCAD)
simulations, it is shown in [10] that a four-terminal switch
can be implemented with CMOS technology. However, the
four-terminal switch device structures of [10] have a lower
capability of conducting current while having nearly the same
area when compared to our proposed implementation. More-
over, the devices of [10] cannot be simulated with transistor
models provided by the semiconductor foundries.
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In this study, we introduce the implementation of a four-
terminal switch and a switching lattice in a standard CMOS
process. We also describe the realization of logic functions
on switching lattices using static pseudo NMOS logic and
dynamic logic. We present the results of designs realizing logic
functions using conventional two-terminal switches and the
proposed four-terminal switches under TSMC 65nm CMOS
process. It is observed that the implementations with switching
lattices offer around at least 2X smaller area than those of
the conventional implementations with comparable delay and
power consumption values. This performance improvement is
based on two factors: 1) the number of four-terminal switches
needed to synthesize a logic function is smaller than those of
two-terminal switches; and 2) switching lattices have dense,
regular, and metal-connection-free layouts.

This paper is organized as follows. Section II describes
the implementation of a four-terminal switch and a switching
lattice in a standard CMOS process. Section III describes the
realization of logic functions on switching lattices using static
pseudo NMOS logic and dynamic logic. Section IV presents
the experimental results and Section V concludes the paper
with discussions and future directions.

II. CMOS IMPLEMENTATION OF FOUR-TERMINAL
SWITCH AND SWITCHING LATTICE

Previously, two CMOS-compatible four-terminal switch de-
vices, namely the square-shaped and the cross-shaped, are
introduced in [10]. Since the square-shaped one has higher
current conducting capability, smaller area, and it is easier to
manufacture compared to the square-shaped one, we decide
to further investigate it in this study. Fig. 3(a) and (b) present
3D view of its implementation and its layout in TSMC 65nm
process as an n-type switch, respectively. In Fig. 3(a), gate
insulator may be silicon oxide or an other insulator depending
on the technology node used, and STI stands for the shallow
trench isolation. In Fig. 3(b), the implemented switch obeys
all the design rules and fits in a compact area; its pitch is only
50% larger than the minimum size NMOS transistor in 65nm
process. Also, a switching lattice can be easily built with these
switches by connecting them with shared diffusion regions
without a need of metal contacts. The only metal connection
in the switch structure is the gate contact shown in the upper
right corner of the square gate shown in Fig. 3(b).

However, this design has two main drawbacks. First, the
gate extension mandated by the design rules results in very
long channels. The minimum channel length of the four-
terminal switch is approximately equal to three times the gate
width of a minimum size NMOS transistor. The minimum size
four-terminal switch in 65nm process ends up having a width
to length ratio of 120nm/400nm. The resulting conductivity
of the equivalent switch is less than one sixth of that in a
minimum size NMOS transistor having a width to length ratio
of 120nm/60nm. The second drawback is that this square-
shaped device as well as the cross-shaped one cannot be
simulated with CMOS transistor models.

To overcome these drawbacks, we propose a four-terminal
switch device. Fig. 3(c) and (d) show its 3D view and layout
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Fig. 3. Square-shaped four-terminal switch of [10]: (a) 3D view, and
(b) layout; the proposed four-terminal switch: (c) 3D view, and (d) layout;
the proposed 3× 3 switching lattice: (e) 3D view, and (f) layout.

in TSMC 65nm process as an n-type switch, respectively. In
our design, four independent transistors sharing a single source
region are controlled by a single gate terminal, so it can be
simulated using four NMOS transistors. Additionally, channel
length and width of the device can be set independently
since it has four distinct channels which are turned on and
off simultaneously. Therefore, the channel length can be set
to the minimum value just like a regular transistor. When
carriers flow between any two terminals, they flow through
two transistor channels serially; the effective channel length is
120nm that results in a width to length ratio of 120nm/120nm.
Having a similar area, the proposed minimum size device
offers nearly three times more conductivity compared to the
minimum size square-shaped switch. Fig. 3(e) presents the
3D view of a 3× 3 lattice structure formed with the proposed
switches in a standard CMOS process; a layout of the lattice
in TSMC 65nm process is shown in Fig. 3(f). Since metal
contacts are not used for connecting switches, the lattices
are very compact. The only metal connections in the switch
structure are the gate contacts placed on the upper right corner
of the gates. Here, the minimum switch pitch in a lattice is
limited by the gate distance rules. The gate contact increases
the minimum switch size. Of course, one can increase the
size for more conductivity. The formula for the switch size is
(W+560nm)×(W+510nm); W is the transistor channel width.
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Fig. 4. (a) pseudo NMOS, (b) dynamic, and (c) footed dynamic circuit
structures, all having NMOS switching lattices.

III. REALIZATION OF LOGIC FUNCTIONS USING
SWITCHING LATTICES

We use a single lattice of NMOS switches as a pull-down
network of a pseudo NMOS logic, dynamic logic, and footed
dynamic logic [11]. Fig. 4 shows their circuit structures. In
this figure, the inputs to the switching lattices are actually the
literals of the logic function.

Although the pseudo NMOS logic implementation given
in Fig. 4(a) is a simple and straightforward solution, we
note that the difference between the best-case and the worst-
case equivalent pull-down resistances can be very large in
the designs using the pseudo NMOS logic. Since the pull-up
network is a single PMOS transistor, which is always on, the
PMOS transistor needs to be weaker than the worst-case pull-
down configuration. Therefore, the low to high propagation
delay ends up being significantly worse than the high to low
propagation delay. If the pull-up transistor is too strong, the
output low voltage level will be too high.

To tackle this propagation delay problem, a dynamic logic
implementation is a viable option. In this case, the pull-up
transistor is pulsed with a clock Φ as shown in Fig. 4(b).
The output is evaluated only when the PMOS transistor is
off. Therefore, the output voltage during the precharge is not
a concern. The PMOS transistor in a dynamic logic circuit
can be significantly larger than that in the pseudo NMOS
circuit. Therefore, the low to high propagation delay during
the precharge can be faster.

IV. EXPERIMENTAL RESULTS

We present implementations of 12 logic benchmark func-
tions taken from [12] using two-terminal and four-terminal
switches, all implemented in Cadence environment using
TSMC 65nm CMOS technology. For the implementations,
three main steps are followed that are logic synthesis, circuit
design, and layout generation. Then post layout simulations
are performed to obtain the results.

In the first step, we use two different logic synthesis meth-
ods for the implementations with two-terminal switches. In the
first one, we directly give the truth tables of logic functions to
the Cadence RTL compiler to perform logic optimization. This
method is called cadence_synth. Also to further decrease the
number of transistors with an aim of achieving better layout

TABLE I
DETAILS OF THE LOGIC FUNCTIONS AND SUMMARY OF RESULTS OF

LOGIC SYNTHESIS ALGORITHMS.

Instance

Function Details cadence_synth abc_synth JANUS [8]
# of inputs - # of two- # of two-

size
# of four-

# of products - terminal terminal terminal
degree switches switches switches

5xp1_1 7 - 11 - 5 70 60 4x6 24
apex4_17 9 - 12 - 120 114 7x7 49
apex4_18 9 - 14 - 8 148 116 7x8 56
b12_02 8 - 7 - 5 58 28 4x4 16
ex5_07 8 - 10 - 4 66 50 3x8 24
ex5_10 6 - 7 - 3 30 26 3x6 18
ex5_12 8 - 9 - 3 44 32 3x5 15
ex5_21 8 - 10 - 3 56 52 3x7 21
misex1_02 7 - 5 - 5 48 40 5x4 20
mp2d_03 10 - 5 - 8 56 44 4x6 24
mp2d_04 10 - 6 - 9 58 40 7x3 21
sao2_01 10 - 20 - 10 152 136 12x7 84

Fig. 5. Rotated layout of the switching lattice circuit using the pseudo NMOS
logic for the function sao2_01. Layout area is nearly 8.7µm×5.4µm.

areas at the end, we use an optimization as i) apply a state-of-
art logic synthesis tool on the logic function using a synthesis
script; ii) map the design into the gates of a given library where
the cost value of a gate is defined as the number of MOS
transistors required to build the gate; iii) compute the design
complexity in terms of the number of MOS transistors in the
design; and iv) repeat this process for a number of synthesis
scripts and keep the design with the least complexity. Here, we
use ABC [13] as a logic synthesis tool, a total of 17 synthesis
scripts, and the extended version of the mcnc.genlib library.
This method is called abc_synth. For the implementations with
four-terminal switches, the first step is achieved by JANUS [8].

Table I gives results for the used logic synthesis methods
of abc_synth, cadence_synth, and JANUS with the details of
the used benchmark functions. Here, inputs, products, and
degree stand for the number of inputs, number of products,
and the maximum number of literals in the products of the
logic function in optimized SOP form, respectively. Examining
the results in Table I, we see that the number of two-terminal
switches found using abc_synth is always smaller than those
obtained using cadence_synth. We also see that the solution
of JANUS on each logic function offers much smaller number
of switches compared to abc_synth.

In the second and third steps for the implementations with
two-terminal switches, circuits are designed with the Cadence
Genus tool using Cadence’s digital library, and place and route
is applied with the Cadence Innovus tool, respectively. On the
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TABLE II
SUMMARY OF RESULTS OF DESIGNS IMPLEMENTED USING TWO-AND FOUR-TERMINAL SWITCHES WITH 65NM CMOS PROCESS.

Instance
Implementations with Two-Terminal Switches Implementations with Four-Terminal Switches
CMOS - Cadence CMOS - ABC+Cadence Pseudo NMOS Dynamic NMOS Footed Dynamic NMOS

area delay power area delay power area delay power area delay power area delay power
5xp1_1 47.24 0.24 0.74 40.10 0.21 0.67 17.62 1. 64 4.07 17.62 0.22 4.25 18.85 0.54 0.27
apex4_17 81.31 0.34 1.04 79.17 0.29 1.06 30.20 5.69 2.24 30.20 0.49 2.20 31.74 1.04 0.10
apex4_18 98.93 0.33 1.33 78.07 0.25 1.09 34.09 5.19 2.27 34.09 0.52 2.44 35.75 1.44 0.50
b12_02 31.68 0.18 0.58 18.81 0.16 0.35 12.41 0.98 4.03 12.41 0.11 3.42 13.39 0.46 0.20
ex5_07 45.18 0.31 0.65 40.96 0.17 0.37 19.07 1.29 5.48 19.07 0.17 8.12 20.48 0.34 0.30
ex5_10 20.64 0.19 0.27 18.39 0.15 0.28 14.72 0.62 5.81 14.72 0.16 8.09 15.89 0.29 0.28
ex5_12 22.50 0.13 0.32 22.73 0.12 0.30 12.54 1.17 4.81 12.54 0.17 6.65 13.59 0.36 0.20
ex5_21 38.07 0.24 0.59 35.37 0.18 0.45 16.90 1.02 5.08 16.90 0.18 6.04 18.18 0.26 0.25
misex1_02 22.27 0.20 0.48 24.58 0.15 0.38 14.45 0.70 4.14 14.45 0.14 2.77 15.50 0.52 0.25
mp2d_03 28.93 0.20 0.4 30.69 0.16 0.48 17.62 3.02 2.66 17.62 0.26 3.33 18.85 0.91 0.24
mp2d_04 26.99 0.19 0.39 28.86 0.21 0. 38 14.64 1.87 2.55 14.64 0.11 1.66 15.70 1.15 0.23
sao2_01 94.10 0.42 1.07 95.95 0.27 1.41 46.83 9.88 1.60 46.83 0.14 1.17 48.70 2.66 0.51
Average 46.49 0.25 0.65 42.81 0.19 0.60 20.92 2.75 3.73 20.92 0,22 4,18 22.22 0.83 0.28

other hand for the switching lattices these steps are mostly
manually done with the help of the Cadence Virtuso tool.
While generating the layouts of switching lattices, the place
step is done manually with ease due to the simple and regular
structure of lattices. However, the route or the wiring step
can be very complicated depending on the function to be
implemented. In our case, for all benchmark functions, whole
metal routing can be fit on the lattice and no peripheral area is
wasted for the metal routing. All internal connections of the
lattice can be drawn by the automated routing tool of Cadence
using three metal layers. As an example, Fig. 5 shows the
layout of the logic function sao2_01.

Table II presents layout area (in µm2), worst-case delay (in
ns), and average power dissipation (in µW) results of designs
of logic functions given in Table I. To implement two-terminal
switch based implementations, we consider two approaches
differing by their logic synthesis tools, namely “Cadence” us-
ing cadence_synth for the first step and the mentioned Cadence
tools for the second and third steps, and “ABC+Cadence”
using abc_synth for the first step and the same Cadence tools
for the second and third steps. To implement switching lattices,
we consider three different logics, namely pseudo NMOS
logic, dynamic logic and footed dynamic logic, explained in
Section III. In order to compute delay and power dissipations,
in post layout simulations, we use a test-bench including
10000 input patterns which are applied at 20Mhz.

Comparing two-terminal switch based implementations in
Table II, we see that “ABC+Cadence” gives better re-
sults for all performance metrics in average, compared to
“ABC+Cadence”. On the other hand, comparing four-terminals
switched based ones, the best ones in average are “Pseudo
NMOS”, “Dynamic NMOS”, and “Footed Dynamic NMOS”
for area, delay, and power consumption, respectively. Also,
wee see that the designs using four-terminal switches have
nearly 2X smaller area in average than those using two-
terminal switches. Area efficiency is more prominent in func-
tions having a large number of inputs and products.

V. DISCUSSION AND FUTURE DIRECTION

In this paper, we show implementations of switching lattices
to synthesize logic functions using the pseudo NMOS and

dynamic logic structures under 65nm CMOS design process.
Our performance improvement in terms of area, delay, and
power consumption over conventional CMOS circuits is ex-
pected to get better if smaller CMOS technologies are used.
The reason is that the smaller the CMOS technology the larger
the interconnection problem and this favors switching lattices
having dense, regular, and metal-connection-free structures.
Here, there is also an important challenge. Layout regulations
of most of the under 30nm technologies including the Fin-
FET technologies only allows one dimensional alignment of
transistors, meaning that transistor channels should be parallel
to each other. Therefore new device geometries and layout
techniques should be developed as future work.
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