
A Study on Monotone Self-Dual Boolean Functions

Mustafa Altuna and Marc D. Riedelb
a Electronics and Communication Engineering, Istanbul Technical University, Istanbul , Turkey 34469

b Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA 55455

Corresponding Email: altunmus@itu.edu.tr

Abstract

This paper shows that monotone self-dual Boolean functions in irredundant disjuntive nor-
mal form (IDNF) do not have more variables than disjuncts. Monotone self-dual Boolean
functions in IDNF with the same number of variables and disjuncts are examined. An algo-
rithm is proposed to test whether a monotone Boolean function in IDNF with n variables and
n disjuncts is self-dual. The runtime of the algorithm is O(n3).

1. Introduction

The problem of testing whether a monotone Boolean function in irredundant disjuntive
normal form (IDNF) is self-dual is one of few problems in circuit complexity whose precise
tractability status is unknown (Eiter et al., 2008). This famous problem is called the monotone
self-duality problem. It impinges upon many areas of computer science, such as artificial in-
telligence, distributed systems, database theory, and hypergraph theory (Makino, 2003; Eiter
and Gottlob, 2002).

Consider a monotone Boolean function f in IDNF. Suppose that f has k variables and n
disjuncts:

f (x1,x2, . . . ,xk) = D1 ∨D2 ∨ · · · ∨Dn

where each disjunct Di is a prime implicant of f , i = 1, . . .n. In this study, we show that if f
is self-dual then k ≤ n. We consider the monotone self-duality problem for Boolean functions
with the same number of variables and disjuncts (i.e., n = k). For such functions, we propose
an efficient recursive algorithm that runs in O(n3) time.

In their seminal work, Fredman and Khachiyan showed that the duality of monotone
Boolean functions f and g both in IDNF can be determined in quasi-polynomial time (Fred-
man and Khachiyan, 1996). They constructed their work on the relations between the param-
eters n, m, and k where k is the number of variables of f (or g), and n and m are the number
of disjuncts of f and g both in IDNF, respectively. They showed that the number of variables
is upper bounded by the product of the numbers of disjuncts in f and g; k ≤ n ×m. From
their result, it is apparent that if f is self-dual (i.e., f = g) then k ≤ n2. This result holds true
for both monotone and non-monotone Boolean functions and it has been widely used in the
literature regarding the monotone self-duality problem (Gaur and Krishnamurti, 2000, 2008;
Eiter and Gottlob, 2002; Eiter et al., 2008). We improve on this result for monotone Boolean
functions. In Section 2, by Corollary 1, we show that if f is self-dual then k ≤ n.

Our result can also be applied to dual monotone Boolean functions by using the statement
in Lemma 4: Boolean functions f and g are dual iff a Boolean function af ∨bg∨ab is self-dual

1

where a and b are two additional Boolean variables. In Section 2 by Corollary 2, we show that
if f and g are monotone dual functions both in IDNF then k ≤ n+m−1 where k is the number
of variables, and n and m are the numbers of disjuncts of f and g, respectively. Prior work has
shown that if f and g are dual functions both in IDNF then k ≤ n ·m (Fredman and Khachiyan,
1996; Elbassioni, 2008; Eiter et al., 2008).

Fredman and Khachiyan’s algorithm runs in N o(logN) time to test whether monotone Boolean
functions f and g both in IDNF are dual, where N is the total number of disjuncts in f and
g (i.e., N = n + m). Since the case f = g makes the algorithm check the self-duality of f ,
the monotone self-duality problem can also be solved in quasi-polynomial time that makes
the problem unlikely to be NP hard. The exact time complexity of the problem (in terms
of polynomial time solvability) has not been known yet. However, there are polynomial-
time algorithms in the literature for the sub-classes of the problem (Boros et al., 1997, 2004;
Makino, 2003; Eiter et al., 2008; Elbassioni and Rauf, 2010; Karasan, 2011; Gottlob, 2012). In
this study, we define a new sub-class of this famous problem: monotone Boolean functions
with the same number of variables and disjuncts (i.e.,n = k). For such functions, we propose
an efficient recursive algorithm that runs in O(n3) time. The algorithm and the underlying
mathematics of it are presented in Section 3.

1.1. Definitions

Definition 1 Consider k independent Boolean variables, x1,x2, . . . ,xk . Boolean literals are
Boolean variables and their complements, i.e., x1, x̄1,x2, x̄2, . . . ,xk , x̄k .

Definition 2 A disjunct (D) of a Boolean function f is an AND of literals, e.g., D = x1x̄3x4, that
implies f . A disjunct set (SD) is a set containing all the disjunct’s literals, e.g., if D = x1x̄3x4 then
SD = {x1, x̄3,x4}. A disjunctive normal form (DNF) is an OR of disjuncts.

Definition 3 A prime implicant (PI) of a Boolean function f is a disjunct that implies f such
that removing any literal from the disjunct results in a new disjunct that does not imply f .

Definition 4 An irredundant disjunctive normal form (IDNF) is a DNF where each disjunct
is a PI of a Boolean function f and no PI can be deleted without changing f .

Definition 5 If a Boolean function f covers another Boolean function g then g = 1 makes f = 1,
i.e., g implies f . For example, f = x1x2 covers (is implied by) g = x1x2x3.

Definition 6 Boolean functions f and g are dual pairs iff f (x1,x2, . . . ,xk) = gD = ḡ(x̄1, x̄2, . . . , x̄k).
A Boolean function f is self-dual iff f (x1,x2, . . . ,xk) = f D = f̄ (x̄1, x̄2, . . . , x̄k).

Given an expression for a Boolean function in terms of AND, OR, NOT, 0, and 1, its dual can also
be obtained by interchanging the AND and OR operations as well as interchanging the constants 0
and 1. For example, if f (x1,x2,x3) = x1x2 ∨ x̄1x3 then f D(x1,x2,x3) = (x1 ∨ x2)(x̄1 ∨ x3). A trivial
example is that for f = 1, the dual is f D = 0.

Definition 7 A Boolean function f is monotone if it can be constructed using only the AND and
OR operations (specifically, if it can constructed without the NOT operation).

2

Definition 8 The Fano plane is the smallest finite projective plane with seven points and seven
lines such that and every pair of its lines intersect in one point. A Boolean function that rep-
resents the Fano plane is a monotone self-dual Boolean function with seven variables and seven
disjuncts such that every pair of its disjuncts intersect in one variable. An example is f = x1x2x3 ∨
x1x4x5 ∨ x1x6x7 ∨ x2x4x6 ∨ x2x5x7 ∨ x3x4x7 ∨ x3x5x6.

Definition 9 Consider a Boolean function f . A Boolean function fxj=xi can be obtained by re-
placing every xj with xi in f where xi and xj are any two variables of f . For example, if f =
x1x2 ∨ x1x3 ∨ x2x3x4 then fx2=x1

= x1 and fx4=x3
= x1x2 ∨ x1x3 ∨ x2x3.

2. Number of disjuncts versus number of variables

Our main contribution in this section is Theorem 1. It defines a necessary condition for
monotone self-dual Boolean functions. For such functions, there exists a matching between its
variables and disjuncts, i.e., every variable can be paired to a distinct disjunct that contains
the variable. From this theorem we derive our two main results, presented as Corollary 1 and
Corollary 2.

2.1. Preliminaries
We define the intersection property as follows. A Boolean function f satisfies the inter-

section property if every pair of its disjuncts has a non-empty intersection.

Lemma 1 (Fredman and Khachiyan, 1996) Consider a monotone Boolean function f in IDNF. If
f is self-dual then f satisfies the intersection property.

Proof of Lemma 1: The proof is by contradiction. Consider a disjunct D of f . We assign 1’s
to the all variables of D and 0’s to the other variables of f . This makes f = 1. If f does not
satisfy the intersection property then there must be a disjunct of f having all assigned 0’s.
This makes f D = 0, so f , f D . This is a contradiction. �

Lemma 2 Consider a monotone Boolean function f in IDNF satisfying the intersection property.
Suppose that we obtain a new Boolean function g by removing one or more disjuncts from f . There
is an assignment of 0’s and 1’s to the variables of g such that every disjunct of g has both a 0 and a
1.

Proof of Lemma 2: Consider one of the disjuncts that was removed from f . We focus on the
variables of this disjunct that are also variables of g. Suppose that we assign 1’s to all of these
variables of g and 0’s to all of the other variables of g. Since f is in IDNF, the assigned 1’s
do not make g = 1. Therefore g = 0; every disjunct of g has at least one assigned 0. Since f
satisfies the intersection property, every disjunct of g has at least one assigned 1. As a result,
every disjunct of g has both a 0 and a 1. �

We define a matching between a variable x and a disjunct D as follows. There is a match-
ing between x and D iff x is a variable of D. For example, if D = x1x2 then there is a matching
between x1 and D as well as x2 and D.

Lemma 3 Consider a monotone Boolean function f in IDNF satisfying the intersection property.
Suppose that f has k variables and n disjuncts. Consider b of f ’s k variables where b < k and b < n.
If each of these b variables can be matched with a distinct disjunct of f , and all other unmatched
disjuncts of f do not have any of the matched b variables, then f is not self-dual.

3

Proof of Lemma 3: Lemma 3 is illustrated in Table 1. Note that a variable xi is matched
with a disjunct Di for every i = 1, . . . , b. To prove that f is not self-dual, we assign 0’s and
1’s to the variables of f such that every disjunct of f has both 0 and 1. This results in f = 0
and f D = 1; f , f D . We first assign 0’s and 1’s to the variables of Db+1 ∨ . . .∨Dn to make each
disjunct of Db+1∨ . . .∨Dn have both a 0 and a 1. Lemma 2 allows us to do so. Note that none of
the variables x1, . . . ,xb has an assignment yet. Since f satisfies the intersection property, each
disjunct of D1 ∨ . . .∨Db should have at least one previously assigned 0 or 1. If a disjunct of
D1 ∨ . . .∨Db has a previously assigned 1 then we assign 0 to its matched (circled) variable; if
a disjunct of D1∨ . . .∨Db has a previously assigned 0 then we assign 1 to its matched (circled)
variable. As a result, every disjunct of f has both a 0 and a 1; therefore f is not self-dual.

D1 D2 Db−1 Db Db+1.Dn
. .
. .
x1 x2 xb−1 xb

no x1, ,xb

Table 1: An illustration of Lemma 3.
�

Lemma 4 (Eiter and Gottlob, 1995) Boolean functions f and g are dual pairs iff a Boolean func-
tion af ∨ bg ∨ ab is self-dual where a and b are two additional Boolean variables.

Proof of Lemma 4: From the definition of duality, if af ∨ bg ∨ ab is self-dual then (af ∨ bg ∨
ab)a=1, b=0 = f and (af ∨ bg ∨ ab)a=0, b=1 = g are dual pairs. From the definition of duality, if f
and g are dual pairs then (af ∨bg ∨ab)D = (aD ∨ f D)(bD ∨ gD)(aD ∨bD) = (a∨ g)(b∨ f)(a∨b) =
(af ∨ bg ∨ ab). �

2.2. The Theorem

Theorem 1 Consider a monotone Boolean function f in IDNF. If f is self-dual then each variable
of f can be matched with a distinct disjunct.

Before proving the theorem we elucidate it with examples.

Example 1 Consider a monotone self-dual Boolean function in IDNF

f = x1x2 ∨ x1x3 ∨ x2x3.

The function has three variables x1, x2, and x3, and three disjuncts D1 = x1x2, D2 = x1x3, and
D3 = x2x3. As shown in Table 2, every variable is matched with a distinct disjunct; the circled
x1, x2, and x3 are matched with D1, D3, and D2, respectively. We see that the theorem holds for
this example. Note that the required matching – each variable to a distinct disjunct – might not be
unique. For this example, another possibility is having x1, x2, and x3 matched with D2, D1, and
D3, respectively.

Example 2 Consider a monotone self-dual Boolean function in IDNF

f = x1x2x3 ∨ x1x3x4 ∨ x1x5x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x6 ∨ x3x5.

4

D1 D3 D2
x2 x3 x1
x1 x2 x3

Table 2: An example to illustrate Theorem 1.

The function has six variables x1, x2, x3, x4, x5, and x6, and seven disjuncts D1 = x1x2x3, D2 =
x1x3x4, D3 = x1x5x6, D4 = x2x3x6, D5 = x2x4x5, D6 = x3x4x6, and D7 = x3x5. As shown in
Table 3, every variable is matched with a distinct disjunct; the circled x1, x2, x3, x4, x5, and x6
are matched with D1, D4, D2, D5, D3, and D6, respectively. We see that the theorem holds for this
example.

D1 D4 D2 D5 D3 D6 D7
x2 x3 x1 x2 x1 x3
x3 x6 x4 x5 x6 x4 x3
x1 x2 x3 x4 x5 x6 x5

Table 3: An example to illustrate Theorem 1.

Proof of Theorem 1: The proof is by contradiction. We suppose that at most a variables of
f can be matched with distinct disjuncts, where a < k. We consider two cases, n = a and n > a
where n is the number of disjuncts of f . For both cases, we find an assignment of 0’s and
1’s to the variables of f such that every disjunct of f has both a 0 and a 1. This results in a
contradiction since such an assignment makes f = 0 and f D = 1; f , f D .
Case 1: n = a.

This case is illustrated in Table 4. To make every disjunct of f have both a 0 and a 1, we
first assign 0 to x1 and 1 to xa+1. Then we assign a 0 or a 1 to each of the variables x2, . . . ,xa
step by step. In each step, if a disjunct has a previously assigned 1 then we assign 0 to its
matched (circled) variable; if a disjunct has a previously assigned 0 then we assign 1 to its
matched (circled) variable. After these steps, if every disjunct of f has both a 0 and a 1 then
we have proved that f is not self-dual. If there remain disjuncts, these disjuncts should not
have any previously assigned variables. Lemma 3 identifies this condition and it tells us that
f is not self-dual. This is a contradiction.

D1 D2 Dn−1 Dn
.

xa+1
x1 x2 xa−1 xa

Table 4: An illustration of Case 1.

Case 2: n > a
This case is illustrated in Table 5. We show that f always satisfies the condition in Lemma 3;

accordingly f is not self-dual.
As shown in Table 5, the expression Da+1 ∨ . . . ∨Dn does not have the variable x1 or the

variable xa+1. If it had then at least a+1 variables would be matched; this would go against our
assumption. For example, if Da+1 ∨ . . .∨Dn has x1 then x1 would be matched with a disjunct

5

from Da+1∨ . . .∨Dn and xa+1 would be matched with D1. So a+ 1 variables would be matched
with distinct disjuncts.

D1 D2 Da−1 Da Da+1. Dn
. .

xa+1 .
x1 x2 xa−1 xa

no x1 no xa+1

Table 5: An illustration of Case 2.

If Da+1 ∨ . . .∨Dn does not have any of the variables x2, . . . ,xa then f satisfies the condition
in Lemma 3; f is not self-dual. If it does then the number of disjuncts not having x1 or xa+1
increases. This is illustrated in Table 6. Suppose that Da+1 ∨ . . .∨Dn has variables xj , . . . ,xa−1
where j ≥ 2. As shown in the table, Dj ∨ . . .∨Dn does not have x1 or xa+1. If it had then at least
a+ 1 variables would be matched; this would go against our assumption. For example, if Dj

had xa+1 then xa+1 would be matched with Dj and xj would be matched with a disjunct from
Da+1 ∨ . . .∨Dn. So a+ 1 variables would be matched with distinct disjuncts.

D1 D2 Dj−1 Dj Da−1 Da Da+1Dn

. .
xa+1 .
x1 x2 xj−1 xj xa−1 xa

no x1 no xa+1

Table 6: An illustration of Case 2.

If Dj ∨ . . .∨Dn does not have any of the variables x2, . . . ,xj−1 then f satisfies Lemma 3; f is
not self-dual. If it does have any of these variables then the number of disjuncts not having
x1 or xa+1 increases.

As a result the number of disjuncts not having x1 or xa+1 increases unless the condition
in Lemma 3 is satisfied. Since there must be disjuncts having x1 or xa+1, this increase should
eventually stop. When it stops, the condition in Lemma 3 will be satisfied. As a result, f is
not self-dual. This is a contradiction.

�

Corollary 1 Consider a monotone Boolean function f in IDNF. Suppose that f has k variables and
n disjuncts. If f is self-dual then k ≤ n.

Proof of Corollary 1: We know that if f is self-dual then f should satisfy the matching
defined in Theorem 1. This matching requires that f does not have more variables than
disjuncts, so k ≤ n. �

Corollary 2 Consider monotone Boolean functions f and g in IDNF. Suppose that f has k variables
and n disjuncts and g has k variables and m disjuncts. If f and g are dual pairs then k ≤ n+m−1.

Proof of Corollary 2:
From Lemma 4 we know that the Boolean functions f and g are dual pairs iff a Boolean

function af ∨ bg ∨ ab is self-dual where a and b are Boolean variables. If neither a nor b is

6

a variable of f (or of g) then af ∨ bg ∨ ab has n + m + 1 disjuncts and k + 2 variables. From
Corollary 1, we know that k + 2 ≤ n+m+ 1, so k ≤ n+m− 1. �

3. The self-duality problem

In this section we propose an algorithm to test whether a monotone Boolean function in
IDNF with n variables and n disjuncts is self-dual. The runtime of the algorithm is O(n3).

3.1. Preliminaries
Theorem 2 (Altun and Riedel, 2010, 2012) Consider a disjunct Di of a monotone self-dual
Boolean function f in IDNF. For any variable x of Di there exists at least one disjunct Dj of f
such that SDi ∩ SDj = {x}.

Before proving the theorem we elucidate it with an example.

Example 3 Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3 ∨ x1x3x4 ∨ x1x5x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x6 ∨ x3x5.

The function has seven disjuncts D1 = x1x2x3, D2 = x1x3x4, D3 = x1x5x6, D4 = x2x3x6, D5 =
x2x4x5, D6 = x3x4x6, and D7 = x3x5. Consider the disjunct D1 = x1x2x3. Since SD1 ∩ SD3 = {x1},
SD1 ∩ SD5 = {x2}, and SD1 ∩ SD6 = {x3}, the theorem holds for any variable of D1. Consider the
disjunct D2 = x1x3x4. Since SD2 ∩ SD3 = {x1}, SD2 ∩ SD4 = {x3}, and SD2 ∩ SD5 = {x4}, the
theorem holds for any variable of D2.

Proof of Theorem 2: The proof is by contradiction. Suppose that there is no disjunct Dj of
f such that SDi ∩ SDj = {x}. From Lemma 1, we know that Di has a non-empty intersection
with every disjunct of f . If we extract x from Di then a new disjunct D ′i should also have a
non-empty intersection with every disjunct of f . This means that if we assign 1’s to the all
variables of D ′i then these assigned 1’s make f = f D = (1+. . .)(1+. . .) . . . (1+. . .) = 1. So D ′i implies
f ; D ′i is a disjunct of f . This disjunct covers Di . However, in IDNF, all disjuncts including Di

are irredundant, not covered by another disjunct of f . So we have a contradiction �

Lemma 5 Consider a disjunct D of a monotone self-dual Boolean function f in IDNF. Consider a
variable x of D. Suppose that f has exactly y disjuncts D1, . . . ,Dy such that SD ∩ SDi = {x} for
every i = 1, . . . , y. A Boolean function g = (Dx=1)((D1∨ . . .∨Dy)x=1)D implies (i.e., is covered by) f .

Before proving the lemma we elucidate it with an example.

Example 4 Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3 ∨ x1x3x4 ∨ x1x5x6 ∨ x2x3x6 ∨ x2x4x5 ∨ x3x4x6 ∨ x3x5.

The function has seven disjuncts D1 = x1x2x3, D2 = x1x3x4, D3 = x1x5x6, D4 = x2x3x6, D5 =
x2x4x5, D6 = x3x4x6, and D7 = x3x5. Consider the disjunct D1 = x1x2x3. The disjunct D3 = x1x5x6

is the only disjunct that intersects D1 in x1. Since g =
(
(D1)x1=1

)(
(D3)x1=1

)D
= x2x3x5 ∨ x2x3x6

implies f , the lemma holds for this case. The disjuncts D6 = x3x4x6 and D7 = x3x5 are the only

disjuncts that intersect D1 in x3. Since g =
(
(D1)x3=1

)(
(D6 ∨D7)x1=1

)D
= x1x2x4x5 ∨ x1x2x5x6

implies f , the lemma holds for this case.

7

Proof of Lemma 5: To prove the statement we check if g = 1 always makes f = f D = 1 (by
assigning 1’s to the variables of g). Suppose that f has n disjuncts D1, . . . ,Dy ,D,Dy+2, . . . ,Dn.
If g = 1 then both (Dx=1) = 1 and ((D1 ∨ . . .∨Dy)x=1)D = 1. From Lemma 1, we know that if
(Dx=1) = 1 then every disjunct of Dy+2, . . .∨,Dn has at least one assigned 1. From the definition
of duality, we know that if ((D1 ∨ . . . ∨Dy)x=1)D = 1 then every disjunct of D1, . . . ,Dy has at
least one assigned 1. As a result, every disjunct of f has at least one assigned 1 making
f = f D = (1 + . . .) . . . (1 + . . .) = 1. �

Lemma 6 Consider a monotone self-dual Boolean function f in IDNF with k variables. Consider
any b of f ’s k variables where b < k. A set of these b variables has a non-empty intersection with at
least b+ 1 disjunct sets of f .

Before proving the lemma we elucidate it with an example.

Example 5 Consider a monotone self-dual Boolean function function in IDNF

f = x1x2x3x4 ∨ x1x5 ∨ x1x6 ∨ x2x5x6 ∨ x3x5x6 ∨ x4x5x6.

The function has six disjuncts D1 = x1x2x3x4, D2 = x1x5, D3 = x1x6, D4 = x2x5x6, D5 = x3x5x6,
and D6 = x4x5x6. Consider a set of two variables {x2,x3}; b = 2. Since it has a non-empty intersec-
tion with three disjunct sets SD1, SD4, and SD5, the lemma holds for this case. Consider a set of
one variable {x1}; b = 1. Since has a non-empty intersection with three disjunct sets SD1, SD2, and
SD3, the lemma holds for this case.

Proof of Lemma 6: The proof is by contradiction. From Theorem 1, we know that each of the
k variables should be matched with a distinct disjunct, so a set of b variables of f should have
a non-empty intersection with at least b disjunct sets of f . Suppose that a set of b variables
of f has a non-empty intersection with exactly b disjunct sets of f . Lemma 3 identifies this
condition and it tells us that f is not self-dual. This is a contradiction. �

Theorem 3 Consider a monotone self-dual Boolean function f in IDNF with k variables. Consider
any b of f ’s k variables where b < k − 1. If every variable of f occurs at least three times then a set
of the b variables has a non-empty intersection with at least b+ 2 disjunct sets of f where b < k −1.

Proof of Theorem 3: The proof is by induction on b.
The base case: b = 1.

Since a variable of f occurs three times, a set of one variable should have a non-empty
intersection with at least three disjunct sets of f .
The inductive step: Assume that the theorem holds for b ≤ m where m ≥ 2. We show that it
also holds for b = m+ 1.

Consider a set of m + 1 variables S = {x1, . . . ,xm+1}. Consider a disjunct D of f such that
SD∩S = {x1, . . . ,xc}. From Theorem 2, we know that there is at least one disjunct that intersects
D in xi for every i = 1, . . . , c. We consider two cases.

For the cases we suppose that f does not have a disjunct set intersecting S in one variable;
if it does then the theorem holds for S (by using the inductive assumption). Also we suppose
that f does not have a disjunct set that is a subset of S; if it does then it is obvious that the
theorem holds for S.

Case 1: There is only one disjunct that intersects D in xi for every i = 1, . . . , c.

8

Suppose that Di is the only disjunct that intersects D in xi for every i = 1, . . . , c. Consider a
variable set SDx1−xc of ((D1)x1=1∨. . .∨(Dc)xc=1); SDx1−xc includes all variables of ((D1)x1=1∨. . .∨
(Dc)xc=1). From Lemma 5, we know that

(
(D)xi=1

)(
(Di)xi=1

)D
implies f for every i = 1, . . . , c.

This means that f should have at least |SDx1−xc ∩ S | disjuncts such that each of them has
one distinct variable from SDx1−xc ∩ S = {xc+1,xc+2, . . . ,xm+1} and none of them is covered by
(D ∨D1 ∨ . . .∨Dc).

If SDx1−xc ∩S = {xc+1,xc+2, . . . ,xm+1} then f has at least |SDx1−xc ∩S | = m− c+ 1 disjunct sets
such that each of them intersects {xc+1,xc+2, . . . ,xm+1} in one variable. Therefore, including
SD, SD1, SD2, . . ., and SDc, f has at least m + 2 disjunct sets such that each of them has a
non-empty intersection with S. If f has exactly m+ 2 disjunct sets then each disjunct of f has
a non-empty intersection with (xc+1xc+2 . . .xm+1)(Dx1=1,...,xc=1). This means that f should have
a disjunct that covers (xc+1xc+2 . . .xm+1)(Dx1=1,...,xc=1). Since none of the m+ 2 disjuncts covers
(xc+1xc+2 . . .xm+1)(Dx1=1,...,xc=1), f needs one more disjunct to cover (xc+1xc+2 . . .xm+1)(Dx1=1,...,xc=1)
that has a non-empty intersection with S. This is a contradiction. As a result, f has at least
m+ 3 disjunct sets such that each of them has a non-empty intersection with S; the theorem
holds for S.

If SDx1−xc ∩ S = {xc+1,xc+2, . . . ,xn} where n < m+ 1 then from our inductive assumption we
know that the variable set {xn+1,xn+2, . . . ,xm+1} intersects at least m− n+ 3 disjunct sets. As a
result, f has at least (c + 1) + |SDx1−xc ∩ S | = (n− c) + (m− n+ 3) = m+ 4 disjunct sets such that
each of them has a non-empty intersection with S. So the theorem holds for S.

Case 2: For at least one of the variables of x1, . . . ,xc, say xc, there are at least two disjuncts
such that each of them intersects D in xc.

The proof has c steps. In each step, we consider all disjuncts of f such that each of them
intersects D in xi where 1 ≤ i ≤ c. We first consider disjuncts D1, . . . ,Dy such that each of them
intersects D in x1. Consider a variable set SDx1

of (D1∨. . .∨Dy)x1=1; SDx1
includes all variables

of (D1 ∨ . . . ∨ Dy)x1=1. From Lemma 5, we know that (Dx1=1)((D1 ∨ . . . ∨ Dy)x1=1)D implies
f . Therefore along with D1 ∨ . . .∨Dy , f should have disjuncts that cover (Dx1=1)((D1 ∨ . . .∨
Dy)x1=1)D . This means that f includes a dual-pair of (D1∨. . .∨Dy)x1=1 and ((D1∨. . .∨Dy)x1=1)D .
From Lemma 4 and Lemma 6, we know that SDx1

∩ S requires at least |SDx1
∩ S |+ 1 disjunct

sets of f such that each of them has a non-empty intersection with S.
We apply the same method for x2, x3, and xc−1, respectively. Consider a variable set SDxi

for every i = 2, . . . , c−1; SDxi is obtained in the same way as SDx1
was obtained in the first step.

In each step if SDxi ∩ S has new variables that are the variables not included in (SDx1
∪ . . .∪

SDxi−1
)∩ S, then these new variables result in new disjuncts. From Lemma 4 and Lemma 6,

we know that the number of new disjuncts is at least one more than the number of the new
variables. Therefore before the last step, including SD, f has at least |(SDx1

∪ . . .∪ SDxc−1
)∩

S |+ (c−1) + 1 disjunct sets (+1 is for SD) such that each of them has a non-empty intersection
with S.

The last step corresponds to xc. If |(SDx1
∪ . . .∪SDxc−1

)∩S | = ((m+1)−c) then SDxc does not
have any new variables. Since there are at least two disjuncts such that each of them intersects
D in xc, f has at least (m+1−c)+(c)+(2) = m+3 disjunct sets such that each of them has a non-
empty intersection with S. So the theorem holds for S. If |(SDx1

∪ . . .∪ SDxc−1
)∩ S | = n where

n < (m+1)−c then S has (m−n−c+1) variables that are not included in ((SDx1
∪. . .∪SDxc−1

)∪SD).
From our inductive assumption, we know that these (m−n− c+ 1) variables results in at least
(m−n−c+1+2) new disjunct sets. As a result, f has at least (m+1−c)+(c)+(2) = m+3 disjunct

9

sets such that each of them has a non-empty intersection with S. So the theorem holds for S.
�

Lemma 7 Consider a monotone self-dual Boolean function f in IDNF with the same number of
variables and disjuncts. If f has a variable occurring two times then f has at least two disjuncts of
size two.

Proof of Lemma 7: If a variable of f , say x1, occurs two times then from Theorem 2, we
know that two disjuncts that have x1 should intersect in x1. Consider the disjuncts x1xa1 . . .xan
and x1xb1 . . .xbm of f . From Lemma 5, we know that both g = (xa1 . . .xan)(xb1 ∨ . . .∨ xbm) and
h = (xb1 . . .xbm)(xa1 ∨ . . .∨ xan) should be covered by f . Note that g and h have total of n + m
disjuncts. These n+m disjuncts should be covered by at most n+m−2 disjuncts of f ; otherwise
Lemma 6 is violated. For example, if n + m disjuncts are covered by n + m − 1 disjuncts of f
then along with the disjuncts x1xa1 . . .xan and x1xb1 . . .xbm there are n+m+ 1 disjuncts having
n + m + 1 variables. This means that a set of the remaining variables, say b variables, has a
non-empty intersection with at most b disjuncts of f , so Lemma 6 is violated.

Any disjunct of f with more than two variables can only cover one of the m+ n disjuncts
of g ∨ h. Therefore to cover m+n disjuncts of g ∨ h with m+n− 2 disjuncts, f needs disjuncts
of size two. Since a disjunct of size two can cover at most two of the m+n disjuncts of g ∨h, f
should have at least two disjuncts of size two. �

Lemma 8 Consider a monotone self-dual Boolean function f in IDNF with the same number of
variables and disjuncts. If each variable of f occurs at least three times then f is a unique Boolean
function that represents the Fano plane.

Proof of Lemma 8: We consider two cases.
Case 1: A pair of disjuncts of f intersect in multiple variables.

We show that if a pair of disjuncts of f intersect in multiple variables then f is not self-
dual. Consider two disjuncts D1 and D2 of f such that they intersect in multiple variables.
Suppose that both D1 and D2 have variables x1 and x2. This case is illustrated in Table 7.
Note that x3, x4, . . ., xk are matched with D3, D4, . . ., Dk , respectively. This is called perfect
matching. Hall’s theorem describes a necessary and sufficient condition for this matching: a
subset of b variables of {x3, . . . ,xk} has a non-empty intersection with at least b disjunct sets
from SD3, . . . ,SDk . From Theorem 3, we know that a set of b variables of f has a non-empty
intersection with at least b + 2 disjunct sets of f . This satisfies the necessary and sufficient
condition for the perfect matching between x3, . . . ,xk and D3, . . . ,Dk .

We find an assignment of 0’s and 1’s to the variables of f such that every disjunct of f has
both a 0 and a 1. To make every disjunct of f have both 0 and 1, we first assign 0 to x1 and 1
to x2. Then we assign a 0 or a 1 to each of the variables x3, . . . ,xk step by step. In each step,
if a disjunct has a previously assigned 1 then we assign 0 to its matched (circled) variable;
if a disjunct has a previously assigned 0 then we assign 1 to its matched (circled) variable.
After these steps, if every disjunct of f has both a 0 and a 1 then we have proved that f is not
self-dual. If there remain disjuncts, these disjuncts should not have any previously assigned
variables. Lemma 3 identifies this condition and it tells us that f is not self-dual.
Case 2: Every pair of disjuncts of f intersect in one variable.

Suppose that a variable of f , say x1, occurs three times. Consider disjuncts D1 = x1xa1 . . .xan,
D2 = x1xb1 . . .xbm, and D3 = x1xc1 . . .xcl of f where n ≤m ≤ l. From Lemma 5, we know that f

10

D1 D2 D3 Dn−1 Dk
.
x2 x1
x1 x2 x3 xk−1 xk

Table 7: An illustration of Case 1.

should cover (xa1 . . .xan)(xb1∨. . .∨xbm)(xc1∨. . .∨xcl) where n ≤m ≤ l. This means that f should
cover m·l disjuncts. These disjuncts are covered by at least m·l disjuncts of f ; otherwise the in-
tersection property does not hold for f . Along with D1, D2, and D3, f has m·l+3 disjuncts hav-
ing m+n+l+1 variables. From Lemma 1, we know that m·l+3 ≤m+n+l+1. The only solution of
this inequality is that n = 2, m = 2, and l = 2. This results in a self-dual Boolean function rep-
resenting the Fano plane, e.g., f = x1x2x3∨x1x4x5∨x1x6x7∨x2x4x6∨x2x5x7∨x3x4x7∨x3x5x6.

If a variable of f occurs more than three times then the value on left hand side of the
inequality m · l + 3 ≤m+n+ l increases more than that on the right hand side does, so there is
no solution. �

Lemma 9 A Boolean function f is self-dual iff fxb=xa , fxc=xa , and fxc=xb are all self-dual Boolean
functions where xa, xb, and xc are any three variables of f .

Proof of Lemma 9: From the definition of duality, f is self-dual iff each assignment of 0’s and
1’s to the variables of f , corresponding to a row of the truth table, satisfies f (x1,x2, . . . ,xk) =
f̄ (x̄1, x̄2, . . . , x̄k). Any dependency between variables of f only eliminates some rows of f ’s
truth table. Therefore, if f is self-dual then fxb=xa , fxc=xa , and fxc=xb are all self-dual. For each
row of f ’s truth table either xb = xa or xc = xa, or xc = xb. Therefore, if fxb=xa , fxc=xa , and fxc=xb
are all self-dual then f is self-dual. �

3.2. The Algorithm

We present a four-step algorithm:
Input: A monotone Boolean function f in IDNF with n variables n disjuncts.
Output: “YES” if f is self-dual; “NO” otherwise.

1. Check if f is a single variable Boolean function. If it is then return “YES”.
2. Check if f represents the Fano plane. If it does then return “YES”.
3. Check if the intersection property holds for f . If it does not then return “NO”.
4. Check if f has two disjuncts of size two, xaxb and xaxc where xa, xb, and xc are variables

of f . If it does not then return “NO”; otherwise obtain a new function f = fxc=xb in IDNF.
Repeat this step until f consists of a single variable; in this case, return “YES”.

If f is self-dual then f should be in one of the following three categories: (1) f is a single
variable Boolean function; (2) at least one variable of f occurs two times; (3) each variable of
f occurs at least three times. From Theorem 2, we know that if f is self-dual and not in (1)
then every variable of f should occur at least two times, so f should be in either (2) or (3).
Therefore these three categories cover all possible self-dual Boolean functions.

The first step of our algorithm checks if f is self-dual and in (1). The second step of our
algorithm checks if f is self-dual and in (3). From Lemma 8, we know that if f is self-dual
and in (3) then f is a unique Boolean function that represents the Fano plane. The third and

11

fourth steps of our algorithm check if f is self-dual and in (2). From Lemma 1, we know that
if f is self-dual then f should satisfy the intersection property. From Lemma 7, we know
that if f is self-dual and in (2) then f should have at least two disjuncts of size two, xaxb and
xaxc. From Lemma 9, we know that f is self-dual iff fxb=xa , fxc=xa , and fxc=xb are all self-dual.
Since f satisfies the intersection property, both fxb=xa = xa and fxc=xa = xa are self-dual. This
means that f is self-dual iff fxc=xb is self-dual. Note that fxc=xb in IDNF has n−1 variables and
n−1 disjuncts. Since fxc=xb satisfies the intersection property and does not represent the Fano
plane, we just need to repeat step four to check if the function is self-dual. Note that to check
if f is self-dual and in (2), we need to repeat step four at most n times.

In step three of the algorithm, we check if the intersection property holds for f . For this
task, we first sort the variables of each disjunct. The sorting algorithm runs in O(nlogn) time
for each disjunct with an assumption that a disjunct of f has at most n variables (Papadim-
itriou, 2003). Since there are total of n disjuncts to be sorted, the total run time is O(n2logn).
Secondly, we check the intersection property for every pair of sorted disjuncts of f . This task
can be achieved by a comparison algorithm that checks the variables of sorted disjunct pairs.
While comparing a disjunct pair , the algorithm starts with the first variables of the disjuncts
(variables with the smallest subscripts in each disjunct). In each comparison, if compared
variables are not same – otherwise the intersection property holds for f – then a variable with
a smaller subscript is replaced by the next variable of the same disjunct. Thus, one variable is
eliminated from further comparisons. Since f has n variables, there are at most n−1 compar-
isons. In the last comparison there are two variables left; the other n − 2 variables are elimi-
nated in the previous n−2 comparisons. This results in that the comparison algorithm runs in
O(n) time. Since the number of the disjunct pairs of f is upper bounded by n2, the total run
time is O(n3). As a result, the step three of the algorithm runs in O(n2logn) +O(n3) = O(n3)
time. The step four of the algorithm is recursive and reduces the number of variables and
disjuncts of f by one in each call. Since f has n variables, this step has n calls (for the worst
case). In each call there is an elimination procedure of a variable for which every variable in
every disjunct should be checked. Since each of the n disjuncts has at most n variables, each
call runs in O(n2) time, so the total runtime of step four is O(n3).

The steps three and four of the algorithm both run in O(n3) time. Therefore the run time
of the algorithm is O(n3).

4. Conclusion

In this paper, we investigate monotone self-dual Boolean functions. We present many new
properties for these type of Boolean functions. Most importantly, we show that monotone self-
dual Boolean functions in IDNF (with k variables and n disjuncts) do not have more variables
than disjuncts; k ≤ n. This is a significant improvement over the prior result showing that
k ≤ n2. We focus on the famous problem of testing whether a monotone Boolean function in
IDNF is self-dual. We examine this problem for monotone Boolean functions with the same
number of variables and disjuncts; k = n. Our algorithm runs in O(n3) time. As a future
work, we plan to extend our results to testing self-duality of monotone Boolean functions
with different n− k > 0 values.

12

References
Altun, M., Riedel, M. D., 2010. Lattice-based computation of Boolean functions. In: Design Automation Confer-

ence. pp. 609–612.
Altun, M., Riedel, M. D., 2012. Logic synthesis for switching lattices. IEEE Transactions on Computers 61 (11),

1588–1600.
Boros, E., Elbassioni, K., Gurvich, V., Khachiyan, L., 2004. Generating maximal independent sets for hypergraphs

with bounded edge-intersections. LATIN 2004: Theoretical Informatics, 488–498.
Boros, E., Hammer, P., Ibaraki, T., Kawakami, K., 1997. Polynomial-time recognition of 2-monotonic positive

boolean functions given by an oracle. SIAM Journal on Computing 26 (1), 93–109.
Eiter, T., Gottlob, G., 1995. Identifying the minimal transversals of a hypergraph and related problems. SIAM

Journal on Computing 24 (6), 1278–1304.
Eiter, T., Gottlob, G., 2002. Hypergraph transversal computation and related problems in logic and AI. Lecture

Notes in Computer Science 2424, 549–564.
Eiter, T., Makino, K., Gottlob, G., 2008. Computational aspects of monotone dualization: A brief survey. Discrete

Applied Mathematics 156 (11), 1952–2005.
Elbassioni, K., 2008. On the complexity of monotone dualization and generating minimal hypergraph transver-

sals. Discrete Applied Mathematics 156 (11), 2109–2123.
Elbassioni, K., Rauf, I., 2010. Polynomial-time dualization of r-exact hypergraphs with applications in geometry.

Discrete Mathematics 310 (17), 2356–2363.
Fredman, M. L., Khachiyan, L., 1996. On the complexity of dualization of monotone disjunctive normal forms.

Journal of Algorithms 21 (3), 618–628.
Gaur, D. R., Krishnamurti, R., 2000. Self-duality of bounded monotone boolean functions and related problems.

In: Algorithmic Learning Theory. Springer, pp. 209–223.
Gaur, D. R., Krishnamurti, R., 2008. Self-duality of bounded monotone Boolean functions and related problems.

Discrete Applied Mathematics 156 (10), 1598–1605.
Gottlob, G., 2012. Deciding monotone duality and identifying frequent itemsets in quadratic logspace. arXiv

preprint arXiv:1212.1881.
Karasan, O. E., 2011. Incremental polynomial time dualization of quadratic functions and a subclass of degree-k

functions. Annals of Operations Research 188 (1), 251–261.
Makino, K., 2003. Efficient dualization of O(log n)-term monotone disjunctive normal forms. Discrete Applied

Mathematics 126, 305–312.
Papadimitriou, C. H., 2003. Computational complexity. John Wiley and Sons Ltd.

13

