
Logic Synthesis and Defect Tolerance for
Memristive Crossbar Arrays

1st Onur Tunali
Nanoscience and Nanoengineering

Istanbul Technical University, Istanbul, Turkey
onur.tunali@itu.edu.tr

2nd Mustafa Altun
Electronics and Communication Engineering

Istanbul Technical University, Istanbul, Turkey
altunmus@itu.edu.tr

Abstract—Contrary to abundant memory related studies of
memristive crossbar structures, logic oriented applications are
only gaining popularity in recent years. In this paper, we study
logic synthesis, regarding both two-level and multi level designs,
and defect aspects of memristor based crossbar architectures.
First, we introduce our two-level and multi-level logic synthesis
techniques. We elaborate on advantages and disadvantages of
both approaches with experimental results regarding area cost.
After that, we devise a defect model in alignment with the
conventional stuck-at open and closed paradigm. In addition,
we determine the effects of defects to the operational capacity
of the crossbar. Furthermore, we propose a preliminary defect
tolerant Boolean logic mapping approach. In order to evaluate
our approach, we conduct extensive Monte Carlo simulations
with industrial benchmarks. Finally, we discuss future directions
concerning both existing two-level and prospective multi-level
logic designs as well as defect tolerance with area redundancy.

Index Terms—memristive crossbar, memristor, logic synthesis,
defect tolerance,

I. INTRODUCTION

Due to the scaling issues of current CMOS based technolo-
gies, researchers have explored novel approaches as computing
elements such as the focus of this paper ”memristors” [1]
[2]. Even though theoretical manifestation of memristor goes
back to 1970s [3], physical realization of an actual circuit
component is very recent and established by HP [4]. After
this initial step, a variety of memristor based logic circuit
designs are proposed such as Boolean logic, implication logic,
and threshold logic. A comprehensive review and references
of memristor based logic circuits can be found in [5]. In this
paper, we focus on logic and defect aspects regarding crossbar
arrays using memristors as switching elements.

First study using hysteric resistors as memristive component
is demonstrated in [6]. An integrated design approach is de-
vised in [7] showing the implementation of arbitrary Boolean
logic functions and their mapping on crossbar array. As a
following study, an elaborated mapping method considering
larger logic functions is presented in [8] by the same author.
Mentioned work adopts a two level logic design using NAND
- AND planes obtaining the negation of a logic function with
a final inversion. However, authors overlooked the fact that the

This work is part of a project that has received funding from the Euro-
pean Union’s H2020 research and innovation programme under the Marie
Skodowska-Curie grant agreement No 691178. This work is supported by the
TUBITAK-Career project #113E760.

crossbar is able to produce the logic function and its negation
as outputs, so considering both cases during mapping process
would generate a potential optimization in terms of area cost.
Furthermore, by modifying the computing states we show that
it is possible to achieve multi-level logic design which uses
the outputs of NAND gates computed in the previous level as
inputs. This also reveals a novel area cost prospect.

Regarding defect issues of crossbar arrays, to our knowledge
no other study focuses on the defects and their affects to logic
circuits realized with memristor crossbar arrays. Certain works
concentrate on the robustness of memristor based logic circuits
[9] and logic gates [10], but disregards any operational or
switch defects. However, defects occur in crossbar degrade
operational capacity of switches and complicate the logic
mapping process severely similar to memory defects examined
in [11] [12]. To tackle this challenge, we devise a defect
model concentrating on faulty switches and their affects to
logic mapping. Borrowing the common terminology, stuck-at
open and closed type defects are defined. Next, we formalize
the defect tolerant logic mapping process and propose a hybrid
algorithm utilizing the combination of a heuristic matching and
an assignment method. Indeed, this problem is very similar
to the logic mapping of reconfigurable nano-crossbar arrays
(using AND-OR logic) for which a quite mature literature
exists [13] [14]. However, the most of mentioned studies focus
on a single plane of crossbar particularly AND and neglect OR
plane. Furthermore, the related algorithms operate using 1.5
times larger size crossbars and show poor performance for
optimum size crossbars. Motivated by these shortcomings, we
propose a hybrid algorithm, combination of heuristic and exact
algorithms, for optimum size crossbars. Our algorithm covers
the whole crossbar array by applying a heuristic approach for
the NAND and AND plane with an exact assignment technique
for the output connections of given logic functions which
is more critical since a single defect might discard a whole
output. As a summary, the main contributions of this paper
are as follows:
• A multi-level logic design is demonstrated and area cost

comparison with existing two-level design is conducted;
• A defect model is established and a preliminary hybrid

defect tolerant logic mapping algorithm is proposed;
• Area optimization with considering both the logic func-

tion and its negation during mapping is shown; and

SET

RESET

RL ‘0’

RH ‘1’
Vh Vth

Vw

-Vh
-Vth-Vw

Vw

VwGND

GND

I I

SET RESET

RLRH RL RH

I

V

(a) (b)

Fig. 1. I-V characteristics (a) and switching operations of a memristor (b).

• Future aspects of both the two-level and multi-level logic
synthesis with area cost and redundancy optimization
(yield analysis) according to defect rates are discussed.

The rest of this paper is organized as follows. Section II
describes memristor model and crossbar based logic circuits.
Section III demonstrates the two-level and multi-level logic
designs with simulation results. Section IV proposes a defect
model, effects of defects, and the defect tolerance algorithm.
Section V presents the experimental results for defect tolerant
logic mapping and area cost. Finally, Section VI discusses
conclusions and future aspects.

II. BACKGROUND AND PREVIOUS WORKS

A. Memristor Model

Memristor is a non-linear electrical component which shows
resistive switching properties. Depending on the physical
characteristics, switching can be smooth or abrupt. In short,
a memristor preserves its sate without exterior influence. So
when it is SET or RESET, memristor keeps its state unless
voltage difference between the terminals of component is
inside the defined constraints. Due to this inherent feature,
it is a likely candidate for a variety of applications such as
non-volatile memory [15], dynamic load [16], neuromorphic
systems [1] and etc. Fig. 1 shows the I-V characteristics and
switching behavior of an ideal memristor. In this paper, we use
Snider Boolean Logic model which regards a lower resistance
RON as logic 0 and a high resistance ROFF as logic 1 [6].

B. Memristive Crossbar Array

Briefly, a crossbar array is constructed from two layers
of orthogonal wires/lines. Every crosspoint/junction acts as a
switching element which is a memristor in this study. Mem-
ristor based crossbar array for logic circuits proposed by Xie
in [7] is able to implement arbitrary logic function in Sum-of-
Products (SOP) form. Two types of memristors are necessary
for primary operations: active memristors which can switch,
and disabled memristors which are permanently in the high
resistance state that is used as an assumed component in both
[6] [7]. There are four distinct regions of the crossbar reserved
for specific operations: Input Latch (IL), NAND plane, AND
plane and Output Latch (OL). If a given logic function is
denoted with f = m1 + ...+mk + ...+mn = m1...mk...mn,
a diagram of the crossbar with plane annotations is given in
Fig. 2(a). Note that, minterm and product concepts are used

...

IL

𝒎𝟏

A

N

D

𝒎𝒏

𝒎𝒊

... INA

SO INR EVR

RI CFM EVM

(a) (b)

f f
OL

INV

Fig. 2. Two-level logic design of memristor crossbar arrays (a) and state
machine diagram (b).

IL
x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8 f f

Power Supply

CMOS

Controller

Disabled memristor

x5x6x7x8

x4

x3

x2

x1

f

OL

NAND plane AND plane

Fig. 3. Logic mapping of a Boolean function on a crossbar with two-level
design.

interchangeably in the literature (although they are fundamen-
tally different), so we follow the same tendency in this paper
as well. In order to compute a given input, step by step process
is as follows: 1) INA: Initialize all the memristors to ROFF;
2) RI: IL block receives inputs from CMOS controller or a
previous OL; 3) CFM: All minterms (products) are configured
by copying values of IL simultaneously; 4) EVM: Evaluate all
minterms configured in NAND plane and write to AND plane;
5) EVR: Evaluate the results of AND plane which calculates
the f ; 6) INR: Invert the results to obtain f from f ; and 7)
SO: Send outputs to OL.

State machine diagram of computation process is given in
Fig. 2. For every computation step, certain voltage values are
applied to horizontal and vertical lines according to CMOS
controller circuit. Reader is encouraged to refer [7] for further
information.

C. Logic Synthesis

Logic synthesis process of a crossbar is consisted of
choosing which switches to activate and disable in order to
implement a given Boolean function. A memrsitor switch can
be programmed into two operational range:
• active: Memristor can switch between two resistive states

(low RON and high ROFF)
• disabled: Memristor always stays in ROFF sate regardless

of voltage difference.
Given a Boolean function f = x1 + x2 + x3 + x4 +

x5 x6 x7 x8, implementation is given in Fig. 3. Horizontal and
vertical lines represent the minterms and inputs respectively.

...

IL

𝒎𝟏

Multi-level

connection

𝒎𝒏

𝒎𝒊

...

f f
OL

INV

INA

SO INR EVM

RI CFM EVM

(a) (b)

CR

nL: number of

levels

nL< n

Fig. 4. Multi-level logic design of memristor crossbar arrays (a) and state
machine diagram (b).

If an input is present in the minterm, corresponding switch
is activated, otherwise disabled. In addition, we introduce two
parameters used in both multi-level design and defect tolerance
performance of crossbars:
• Area cost: The size of the crossbar used to implement a

given logic function
• Logic Inclusion Ratio (IR): The ratio of the number of

switches (memristors) used to realize a logic function to
area cost

Using the example in Fig. 3, crossbar has 7 horizontal
lines and 18 vertical lines so area cost is 126. There are 31
memristors used in implementation, so IR = 31

126 = 25%.

III. MULTI-LEVEL LOGIC SYNTHESIS

So far proposed architectures use two-level NAND-AND
design to implement a given Boolean function [7] [8]. Certain
studies such as [17] [18] explore the multi-level logic design,
however rather than using the connection capabilities of a
single crossbar they use multiple crossbars to generate inter-
mediate values and cascade them to obtain outputs. Instead of
the explained approach, we show that it is possible to modify
a crossbar to obtain multi-level design by introducing minterm
dependent computation cycles.

A. Proposed Multi-level Design

A diagram of multi-level design is given in Fig. 4 (a). We
use multi-level connections in place of AND plane utilized in
two-level approach. By activating corresponding memristors, a
minterm evaluation (EVM) result can be fed as input to another
minterm (horizontal line). Key point is to evaluate minterms
one-by-one instead of evaluating all of them simultaneously.
Computation steps are shown as a state machine in Fig. 4
(b). Extra state CR (copy result) writes the result of the
minterm evaluation to next level minterm as input. Conditional
constraint nL < n (nl number of levels and n computation
step) ensures that computation steps proceed to next state
unless all minterms are evaluated.

As an example we use the same f = x1 + x2 + x3 +
x4 + x5 x6 x7 x8 function in Fig. 3 and synthesis it with a
multi-level design. Physical implementation shown in Fig. 5
demonstrates a crossbar with 3 horizontal lines and 19 vertical
lines, so area cost is 59 . By using multi-level design, we are
able to reduce the area cost less than half of the two-level
design which has an area cost of 126.

IL
x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8 f f

Power Supply

CMOS

Controller

x5x6x7x8

x1x2x3x4

Multi-level connection

Fig. 5. Logic mapping of a Boolean function on a crossbar with multi-level
design.

B. Results of Area Cost Simulations

To further examine the cost advantages of multi-level, we
conduct Monte Carlo simulations by randomly generating
Boolean functions and using Berkley ABC [19] logic synthesis
tool to acquire a gate level technology mapping. We force ABC
to use a set of NAND gates (which have fan-in sizes 2 to n that
is determined according to input size of a given logic function),
so implementation of a logic function is achievable with a
memristor based crossbar array. Using a MATLAB™ script,
we are able to obtain the area cost of random Boolean
functions expressed with n-input NAND gates by ABC.

Results of our simulations are shown in Fig. 6. We use a
sample size of 200 for each simulation and input size of 8
through 15. Cost results are sorted according to number of
products increasingly. Success rate indicates the percentage of
sample size which have a smaller muti-level area cost than
two-level design. It is clear from the graphs that, two trends
emerge regarding input size and product number parameters
of the Boolean functions. When the input size increases, it
is more challenging to find a superior multi-level design so
success rate drops. When the product size increase, it is easier
to find a superior multi-level design. As can be seen from
the graphs, the number of samples staying under the two-level
area cost line increases as progressed towards the right side
meaning larger number of products.

As for the disadvantages, so far we use only single output
logic functions and exclude multi-output logic functions such
as benchmark functions. To secure a fair assessment, we
conduct an area cost comparison of benchmark circuits most
of which has multi-output logic circuits presented in [20]. We
present a portion of our results in Table I. Even though we
choose the examples with most moderate results, area cost
difference is still drastic when multi-output functions are con-
sidered. Only exceptions are t481 and cordic which have single
output and 2 outputs respectively. Since conventional EDA
tools are used for technology mapping, satisfactory results
cannot be obtained for larger and multi-output benchmark
functions. Field of memristor specific technology dependent
mapping tools are open to further research.

IV. DEFECT ASPECTS OF MEMRISTOR CROSSBAR ARRAY

Due to stochastic nature of nano-fabrication, a number
of variations might occur during production depending on
used materials, alignment issues, integration, etc.. Mentioned
physical alterations might cause variations in the operational

0 50 100 150 200
Sample Number

50

100

150

C
o

st

Input Size = 8 (Success Rate = 65 %)

Two-level
Multi-level

0 50 100 150 200
Sample Number

50

100

150

200

C
o

st

Input Size = 9 (Success Rate = 60 %)

Two-level
Multi-level

0 50 100 150 200
Sample Number

50

100

150

200

250

C
o

st

Input Size = 10 (Success Rate = 54 %)

Two-level
Multi-level

0 50 100 150 200
Sample Number

100

200

300

400

500

600

C
o

st

Input Size = 15 (Success Rate = 33 %)

Two-level
Multi-level

Two-level and Multi-level Area Cost Comparison

Fig. 6. Area cost comparison of two-level and multi-level designs. The results
are sorted in ascending order according to number of products in a sample.
Flat lines shows the equal number of products for the samples, so the area
cost of two-level design is constant, while multi-level design results fluctuate.

TABLE I
TWO-LEVEL AND MULTI-LEVEL AREA COST COMPARISON OF

BENCHMARK FUNCTIONS

Bench Name Original Circuit Negation of Circuit
Two-level Multi-level Two-level Multi-level

rd53 544 3000 560 2000
con1 198 480 198 527

misex1 570 4836 1590 4161
bw 3300 52875 3564 53110

sqrt8 1008 2745 792 3300
rd84 6216 48124 7128 20276
b12 2496 7800 2064 2691
t481 16388 5760 12274 8034

cordic 45800 9594 59650 10668

capacity of memristors, permanent defects or transient faults in
wires and switches of memristive crossbar array. However for
the sake of simplicity, we only explore the switching defects
in this section.

A. Defect Model

A defective switch cannot operate properly meaning no
switching between different states, so a switch defect of
memristors might be modeled as stuck-at open and stuck-at
closed type. Physical resistance equivalence of defect types
can be defined as follows:
• stuck-at open: Memristor is always in ROFF mode which

means high resistance
• stuck-at closed: Memristor is always in RON mode which

means low resistance
Stuck-at open defects show the same characteristics with

the disabled memristors used in mapping phase and avoiding

(a)

(b)

x1 x2 x3 x1 x2 x3 O1

x1x2

O1O2 O2

O1

O2

x2x3

x1x3

x2x3

x3 x2 x1 x1 x2 x3 O1

x1x2

O1O2 O2

O2

O1

x2x3

x1x3

x2x3

Stuck-at open

O1’ = x1x2 + x2x3 = O1

O1’ = + x1x2
x2x3 = O1

O2’ = x1x3 + x2x3 = O2

Given Outputs

O1 = m1 + m2 = x1x2 + x2x3 x1x3 + x2x3O2 = m3 + m4 =

m1

m2

m3

m4

m2

m1

m3

m4

O2 : No connection

Fig. 7. Logic mapping of a given Boolean function. Red diagonal lines
represent a defect on the crosspoint. First mapping is applied by disregarding
defects without a valid mapping (a) and second mapping is applied by
considering defects with a valid mapping (b).

them during logic mapping is adequate for a valid mapping.
However, stuck-at closed defects are always RON, so they
disrupt the operational capacity of both horizontal and vertical
lines. Since every computation step starts with initializing all
the memristors to ROFF and then copying the input values
to minterms, vertical line belonging to the defective switch
cannot be used. Furthermore, RON is equivalent to a logic 0
in Snider Boolean Logic model [6], so every horizontal line
which computes a NAND gate outputs a logic 1 independent of
the other inputs. For this reason when a stuck-at closed defect
is present, horizontal line belonging to the defective switch
cannot be used as well. Because of the mentioned challenges,
tolerance of stuck-at closed defects is not possible without
any redundant crossbar lines. Yield analysis concerning the
relationship between area cost with redundant lines and defect
tolerance performance is open for future research.

B. Defect Tolerant Logic Synthesis Method

In a defective crossbar, certain switches cannot be pro-
grammed as desired (switching or disabled), so logic synthesis
process must consider defective switches. In Fig. 7(a), a naive
mapping approach disregarding defects is applied for given
logic functions and an invalid implementation is obtained.
However, in Fig 7(b), after careful consideration a valid
mapping is produced with activating correct switches. Before
explaining our methodology, we introduce the following con-
cepts used in our algorithm:

1) Function matrix (FM) is a representation of a logic
function in sum-of-products form. If an input occurs in a

minterm, it is denoted with 1; otherwise 0 is assigned. Fig.
8(a) shows an example of an FM.

2) Crossbar matrix (CM) is a representation of a crossbar
showing either defective or functional switches. Fig. 8(b)
shows a CM that can be also referred as a defect map.
Functional switches are denoted with 1’s that can be matched
with 1’s and 0’s in an FM. Stuck-open switches are denoted
with 0’s that can only be matched with 0’s in an FM.

3) Row matching checks a row of FM and CM element-by-
element. If every element of rows complies with the matching
rules given above, then a minterm can be matched to horizontal
line of crossbar.

4) Matching matrix shows valid row matchings of FM and
CM. This is similar to a cost matrix used in assignment
problems having an objective of minimizing the total cost.
Fig. 8(c) shows a matching matrix of function and crossbar
matrices in Fig. 8(a) and (b), respectively. A 0 and 1 elements
of the matrix respectively show that a matching is possible
and there is no matching.

To generate a valid mapping we are using a hybrid algorithm
due to runtime issues. Constructing a matching matrix and
applying an assignment method to all rows as shown in
Fig. 8(d) would increase computational load of the algorithm
excessively for larger logic functions. We will show drastic
runtime differences in experimental results.

In short, our algorithm is composed of three parts: First,
area cost of the logic function and its negation is calculated.
Smaller case is chosen for implementation. Second, a heuristic
matching is applied to all minterm (product) rows of FM
(denoted with FMm Fig. 8(a)) which performs row by row
matching between FMm and CM from top to bottom. During
the process, matched rows of the CM are traced with an array
showing which rows of the FMm are assigned to them. At first,
the matching searches only unmatched rows. If an FMm row
can not be matched with the unmatched rows of the CM, then
backtracking starts by considering the matched rows of the CM
from top to bottom. If a matching is found, the previously
assigned row of the FMm is checked once whether it can
be assigned to an unmatched row of the CM. If this check
results in a mismatch then the algorithm continues with the
next matched row of the CM and repeats the same process
to find a valid matching. As a final step, a matching matrix
for output rows of FM (denoted with FMo Fig. 8(a)) and
unmatched rows of CM (denoted with CMu) is constructed. By
using an assignment algorithm choosing which Oi is mapped
to Hk yielding a zero cost, we ensure every output has valid
row matching. We use Munkres’ algorithm [21] for finding
an assignment producing zero cost. This is an exact algorithm
which means if a zero cost is possible, it will be found by it.

V. EXPERIMENTAL RESULTS

To obtain experimental results, we generate defective cross-
bars with assigning an independent defect probability/rate to
each crosspoint that shows a uniform distribution. As opposed
the common tendency of using 1.5 times larger crossbars for
logic mapping [13] [14], we utilize optimum size crossbars

1 1 0 0 0 0 1 0 0 0
0 0 1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1 0 0
0 1 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1

(a) (b)

Function Matrix (FM) Crossbar Matrix (CM)

O1 = m1 + m2 = x1x2 + x2x3

x1x3 + x2x3O2 = m3 + m4 =

x1 x2 x3 x1 x2 x3 O1 O1O2 O2

1 0 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 0 1 1 1 0 1 1

V1 V3 V4 V5 V6 V7 V8 V9 V10V2

H1

H3

H4

H5

H6

H2

m1

m2

m3

m4

O1

O2

Matching Matrix

1 0 1 1 1 0
0 0 0 0 0 0
1 0 0 1 0 0
1 1 0 1 0 0
0 1 1 1 1 1
0 1 0 1 0 0

m1 m2 m3 m4 O1 O2

H1

H3

H4

H5

H6

H2

m1

m2

m3

m4

O1

O2

H5

H4

H2

H6

H3

H1

(c) (d)

Assignment Process

1 0 1 1 1 0
0 0 0 0 0 0
1 0 0 1 0 0
1 1 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 1

m1 m2 m3 m4 O1 O2

H1

H3

H4

H5

H6

H2

Cost = 0 : Valid Mapping

FMm FMo

Fig. 8. Function matrix (a) crossbar matrix (b) matching matrix (c) and a
valid assignment (d).

Algorithm 1 Hybrid Mapping Methodology
1: Input : FM, CM
2: Output: row assignment
3: minterm mapping = false
4: valid mapping = false;
5: matched rows ={}
6: for i = 1 to N do
7: flag = false;
8: F i ← ith row of FMm

9: for t = 1 to N and C t /∈ matched rows do
10: Try matching F i with C t

11: if a matching exist then
12: flag = true;
13: break
14: end if
15: end for
16: if ¬ flag then
17: flag = BACKTRACKING(Rowi)
18: end if
19: if ¬flag then
20: no possible row matching
21: break
22: end if
23: end for
24: if all rows of FMm are matched then
25: minterm mapping = true
26: end if
27: if minterm mapping then
28: matching matrix = MATCHINGCHECK(FMo, CMu) . Matching matrix

construction
29: [cost, assignment] = MUNKRES(matching matrix) . Assignment algorithm

[21]
30:
31: if cost = 0 then
32: row assignment = assignment
33: valid mapping = true;
34: end if
35: end if

for mapping meaning no redundant lines are present. We only
include stuck-at open defects since our simulation regards
a minimum area cost and defect tolerance is not possible
in terms of stuck-at closed types as mentioned in previous
section. Monte Carlo simulations are performed for assessment
with a sample size of 200. We observe that fluctuating of

TABLE II
SUCCESS RATE (%) AND RUNTIME VALUES (IN SECONDS) OF PROPOSED

HYBRID ALGORITHM (HBA) AND EXACT ALGORITHM (EA) FOR
OPTIMUM AREA CROSSBARS WITH 10% DEFECT RATE

Name I O P Area Cost IR
HBA EA

Psucc Time Psucc Time
rd53 5 3 31 544 33% 98% 0.001 98% 0.001

squar5 5 8 25 858 16% 100% 0.001 100% 0.001
bw 5 8 22 330 12% 100% 0.002 100% 0.003
inc 7 9 30 1248 17% 100% 0.001 100% 0.002

misex1 8 7 12 570 19% 100% 0.001 100% 0.001
sqrt8 7 4 29 792 21% 100% 0.001 100% 0.002
sao2 10 4 58 1736 29% 94% 0.001 97% 0.003
rd73 7 3 127 2600 34% 78% 0.002 92% 0.013
clip 9 5 120 3500 23% 76% 0.005 79% 0.082
rd84 8 4 255 6216 33% 82% 0.006 89% 0.093

ex1010 10 10 284 11760 23% 100% 0.003 100% 0.062
table3 14 14 175 10584 25% 100% 0.004 100% 0.032

misex3c 14 14 197 11856 13% 100% 0.003 100% 0.035
exp5 8 63 74 19454 10% 65% 0.006 80% 0.024
apex4 9 19 436 25480 21% 100% 0.008 100% 0.173
alu4 14 8 575 25652 19% 100% 0.008% 100% 0.284

I,O,P: Input, Output and Product. Implementation with dual is shown in bold.

parameter values stabilize nearly after this threshold value.
All algorithms are implemented in MATLAB™. Standard
benchmark circuits presented in [20] are used for mapping
algorithms. All experiments run on a 3.30GHz Intel Core i7
CPU (only single core used) with 8GB memory.

To evaluate the proposed hybrid algorithm (HBA), we
consider success rate and runtime values compared to those of
the exact algorithm (EA). Contrary the our algorithm which
applies assignment method only to output rows, the exact
algorithm constructs the matching matrix for all minterms and
output rows of FM and then applies the assignment method
as shown inf Fig. 8(d). Table II shows the results. In terms
of runtime, HBA is superior for all cases, at least one order
of magnitude and at most two order of magnitude for circuits
such as apex4 and alu4. However, regarding the success rate
(Psucc) showing the percentage of valid mapping found for
200 samples, there is up to 15% difference that is a small
trade-off for our runtime gain.

VI. DISCUSSION

In this paper, we study logic synthesis and defect tolerance
of memristor based crossbar arrays. We propose two-level and
multi-level logic synthesis techniques. We show that for certain
single output logic functions, multi-level synthesis reduces the
area cost drastically. However, since conventional EDA tools
are used for technology mapping satisfactory, results cannot
be obtained for larger and multi-output benchmark functions.
Field of memristor specific technology dependent mapping
tools are open to further research.

In addition, we devise a defect model and propose a hybrid
defect tolerant logic mapping method. We show that in spite of
defective components, securing a valid mapping is achievable
with an appropriate algorithm. Nevertheless, we only employ
optimum size crossbars meaning minimum sized crossbar
array to realize the given logic function during our mapping
simulation. Because of that, exploring redundant crossbar ar-
eas might improve the defect tolerance performance especially

regarding stuck-at closed type defects which prevents the
usage of an entire horizontal and vertical lines. As an another
future direction, we plan to integrate multi-level logic design
with our defect tolerant logic mapping methods.

REFERENCES

[1] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain,
N. Srinivasa et al., “A functional hybrid memristor crossbar-array/cmos
system for data storage and neuromorphic applications,” Nano letters,
vol. 12, no. 1, pp. 389–395, 2011.

[2] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[3] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, no. 5, pp. 507–519, 1971.

[4] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” nature, vol. 453, no. 7191, p. 80, 2008.

[5] I. Vourkas and G. C. Sirakoulis, “Emerging memristor-based logic circuit
design approaches: A review,” IEEE Circuits and Systems Magazine,
vol. 16, no. 3, pp. 15–30, 2016.

[6] G. Snider, “Computing with hysteretic resistor crossbars,” Applied
Physics A: Materials Science & Processing, vol. 80, no. 6, pp. 1165–
1172, 2005.

[7] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Fast boolean logic mapped on memristor crossbar,” in Computer Design
(ICCD), 2015 33rd IEEE International Conference on. IEEE, 2015,
pp. 335–342.

[8] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels, “A
mapping methodology of boolean logic circuits on memristor crossbar,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 99, 2017.

[9] L. Xie, “Towards robust implementation of memristor crossbar logic cir-
cuits,” in Ph. D. Research in Microelectronics and Electronics (PRIME),
2016 12th Conference on. IEEE, 2016, pp. 1–4.

[10] L. Xie, H. A. Du Nguyen, J. Yu, M. Taouil, and S. Hamdioui, “On the
robustness of memristor based logic gates,” in Design and Diagnostics of
Electronic Circuits & Systems (DDECS), 2017 IEEE 20th International
Symposium on. IEEE, 2017, pp. 158–163.

[11] S. Kannan, N. Karimi, R. Karri, and O. Sinanoglu, “Detection, diag-
nosis, and repair of faults in memristor-based memories,” in VLSI Test
Symposium (VTS), 2014 IEEE 32nd. IEEE, 2014, pp. 1–6.

[12] S. Hamdioui, M. Taouil, and N. Z. Haron, “Testing open defects in
memristor-based memories,” IEEE Transactions on Computers, vol. 64,
no. 1, pp. 247–259, 2015.

[13] O. Tunali and M. Altun, “Permanent and transient fault tolerance for
reconfigurable nano-crossbar arrays,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 36, no. 5, pp.
747–760, 2017.

[14] O. Tunali and M. Altun, “A survey of fault-tolerance algorithms for
reconfigurable nano-crossbar arrays,” ACM Comput. Surv., vol. 50, no. 6,
pp. 79:1–79:35, Nov. 2017.

[15] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur et al.,
“A fast, high-endurance and scalable non-volatile memory device made
from asymmetric ta2o5-x/tao2-x bilayer structures,” Nature materials,
vol. 10, no. 8, p. 625, 2011.

[16] Y. V. Pershin and M. Di Ventra, “Practical approach to programmable
analog circuits with memristors,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 57, no. 8, pp. 1857–1864, 2010.

[17] M. Traiola, M. Barbareschi, and A. Bosio, “Formal design space
exploration for memristor-based crossbar architecture,” in Design and
Diagnostics of Electronic Circuits & Systems (DDECS), 2017 IEEE 20th
International Symposium on. IEEE, 2017, pp. 145–150.

[18] M. Traiola, M. Barbareschi, A. Mazzeo, and A. Bosio, “Xbargen: A
memristor based boolean logic synthesis tool,” in Very Large Scale
Integration (VLSI-SoC), 2016 IFIP/IEEE International Conference on.
IEEE, 2016, pp. 1–6.

[19] B. L. Ssynthesis, “Verification group,” ABC: A system for sequential
synthesis and verification, 2013.

[20] K. McElvain, “Iwls93 benchmark set: Version 4.0,” in Distributed as
part of the MCNC International Workshop on Logic Synthesis, vol. 93,
1993.

[21] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the society for industrial and applied mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

