EHB322E Digital Electronic Circuits Homework 1
 Deadline: 06/03/2017 (before 13:30)

Consider a pseudo NMOS inverter shown below.

1) CALCULATION: Use the following parameters for your calculations. Neglect Early effect (V_{A} is infinite).
Transistor parameters: $k_{p}{ }^{\prime}=\mu_{p} c_{o x}=48 \mathrm{uA} / \mathrm{V}^{2}, k_{n}{ }^{\prime}=\mu_{n} c_{o x}=156 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{TN}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{TP}}=-0.95 \mathrm{~V}$, $\mathrm{W}_{\mathrm{P}}=3.2 \mathrm{u}, \mathrm{L}_{\mathrm{P}}=0.6 \mathrm{u}, \mathrm{L}_{\mathrm{N}}=0.6 \mathrm{u}$.

Pseudo NMOS Inverter
a) Find the minimum value of $\mathbf{W}_{\mathbf{N}}$ to satisfy that $V_{\text {out }}=0.2 \mathrm{~V}$ when $V_{\text {in }}=5 \mathrm{~V}$ applied.
b) Find the switching threshold value of $\mathbf{V}_{\mathbf{m}}$.
c) Find the static power consumption of the inverter for $V_{i n}=0 \mathrm{~V}$ and $V_{i n}=5 \mathrm{~V}$.
d) Suppose that a load capacitor of 10 pF is connected to the output. Find the value of the propagation delay tplh.
2) SIMULATION: Construct the above circuit using SPICE. Connect body terminals of transistor to their source terminals. Select $W_{P}=3.2 \mathrm{u}, \mathrm{L}_{P}=0.6 \mathrm{u}, \mathrm{L}_{\mathrm{N}}=0.6 \mathrm{u}$. Use T 15 DN and T15DP spice models for NMOS and PMOS transistors, respectively. For details of using LTspice check out the tutorial attached to the homework.
a) Find the minimum value of $\mathbf{W}_{\mathbf{N}}$ to satisfy that $\mathrm{V}_{\text {OL }} V_{\text {out }}=0.2 \mathrm{~V}$ when $V_{\text {in }}=5 \mathrm{~V}$ applied.
b) Sketch voltage transfer curve of the inverter; find noise margin values of $\mathbf{N M}_{\mathbf{L}}$ and $\mathbf{N M}_{\mathbf{H}}$; find the switching threshold value of $\mathbf{V}_{\mathbf{M}}$.
c) Find the static power consumption of the inverter for $V_{i n}=0 \mathrm{~V}$ and $V_{i n}=5 \mathrm{~V}$.
d) Suppose that a load capacitor of 10 pF is connected to the output. Find the value of the propagation delay tple.,
e) Compare the simulation results derived from 2(a), 2(b), 2(c), and 2(d) with those calculated in the first part. Justify your answer.

Grading: $1(a) 15 \%, 1(b) 15 \%, 1(c) 10 \%, 1(d) 10 \%$

$$
2(a) 10 \%, 2(b) 15 \%, 2(c) 5 \%, 2(d) 10 \%, 2(e) 10 \%
$$

Note: Do not forget to attach SPICE output file prints to your homework!

Mini LTspice Tutorial

Model parameters for NMOS and PMOS transistors are given below.

```
.MODEL T15DN NMOS LEVEL=3 PHI=0.7 TOX=9.5E-09 XJ=0.2U TPG=1
+ VTO=0.7 DELTA=8.8E-01 LD=5E-08 KP=1.56E-04
+ UO=420 THETA=2.3E-01 RSH=2.0E+00 GAMMA=0.62
+ NSUB=1.40E+17 NFS=7.20E+11 VMAX=1.8E+05 ETA=2.125E-02
+ KAPPA=1E-01 CGDO=3.0E-10 CGSO=3.0E-10
+ CGBO=4.5E-10 CJ=5.50E-04 MJ=0.6 CJSW=3E-10
+ MJSW=0.35 PB=1.1
.MODEL T15DP PMOS LEVEL=3 PHI=0.7 TOX=9.5E-09 XJ=0.2U TPG=-1
+ VTO=-0.95 DELTA=2.5E-01 LD=7E-08 KP=4.8E-05
+ UO=130 THETA=2.0E-01 RSH=2.5E+00 GAMMA=0.52
+ NSUB=1.0E+17 NFS=6.50E+11 VMAX=3.0E+05 ETA=2.5E-02
+ KAPPA=8.0E+00 CGDO=3.5E-10 CGSO=3.5E-10
+ CGBO=4.5E-10 CJ=9.50E-04 MJ=0.5 CJSW=2E-10
+ MJSW=0.25 PB=1
```

In order to use the parameter sets, shown above, in Ltspice, please follow these steps:
1- Create a .txt file named T15D_models.txt.
2- Copy parameters above and paste them into T15D_models.txt file.
3- Then place T15D_models.txt file into the LTspice folder (or the folder where your project saved).

4- After click on the .op tab as shown in figure below (circled red), write '.include T15D_models.txt' into the opened window. After pressing OK, you will see a rectangle information bar. Paste it somewhere in the schematic.

```
G LTspice V- [Draf1] 
```


5- To add MOS transistors, click on the component tab shown below (circled red), then select NMOS4 and PMOS4.
$\stackrel{\sigma}{\sigma}$ LTspice IV - [Draft1]
F. Eile Edit Hierarchy View Simulate Iools Window Help

6- After selecting the transistor, right click on the transistor; name it as T15DN for NMOS and T15DP for PMOS

7- To enter W and L parameter values, right click on the transistor and write W and L values.

Note: Your simulation results can be slightly different from hand calculations because of the probable mismatches between calculation and simulation parameters.

