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Abstract—During the fabrication of nano-crossbar arrays,
certain amount of defective elements are introduced to the end
product which affect the yield drastically. Current literature
regarding the yield analysis of nano-crossbar arrays is very rough
and limited to the uniform distribution of defect occurrence with
a few exceptions. Since density feature of crossbar architectures is
the main attracting point, we perform a detailed yield analysis by
considering both uniform and non-uniform defect distributions.
Firstly, we briefly explain the present algorithms and their fea-
tures used in defect tolerant logic mapping. Secondly, we explain
different defect distributions and logic function assumptions
used in the literature. Thirdly, we formalize an approximate
successful mapping probability metric for uniform distributions
and determine area overheads. After that, we apply a regional
defect density analysis by comparing uniform and clustered
defects to formulate a looser upper bound for area overheads
regarding clustered distributions. Finally, we conduct extensive
experimental simulations with different defect distributions.

Index Terms—Nano-crossbar; Area Yield; Defect Tolerance

I. INTRODUCTION

Advancements in nanofabrication produce novel emerging
technologies as an answer to longstanding integration and
miniaturization issues of electronic circuits. These develop-
ments lead to programmable circuit architectures based on
nano-crossbar arrays which operate similarly to conventional
programmable logic arrays (PLA’s), molecular switch crossbar
arrays, and resistive crossbar logic [1] and [2]. Two fully
operational implementations as a nanoprocessor and a finite-
state machine are shown to be feasible in [3] and [4].

In short, a nano-crossbar array is constructed from two
layers of orthogonal wires/lines. Every crosspoint/junction
acts as a switching element [2]. Since nano-crossbars are
dominantly produced with bottom-up fabrication techniques
that generates uniform and dense structures, higher defect
rates are more likely to occur. Projected maximum defect rates
present in end products are potentially to deviate between 15%
and 20% [1]. Furthermore, physically realized structures given
in [3] and [4] confirm this range.

High defect rates of nano-crossbars complicate the logic
mapping that generally necessitates area overheads [5]. In this
paper, we use the term yield as the percentage of a nano-
crossbar utilized to realize a given logic function. For example,
a logic function can optimally be realized with a 6 × 4 size
crossbar and if an efficient algorithm is able to find a valid
mapping in the presence of defects with the same size, yield
is 100%. In a different scenario, if a less efficient algorithm is
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able to find a valid mapping with at least 12×8 size crossbar,
yield is 6×4

12×8 = 25%. Since yield values are directly related to
the efficiency of the used algorithm, we implement two state-
of-the-art defect tolerant logic mapping algorithms to evaluate
our yield results for a reliable analysis.

A. Previous Works

Yield analysis of nano-crossbars for uniformly distributed
defects is first conducted partially in [6] as an area overhead
calculation. Even though necessary size of a nano-crossbar for
a successful logic mapping is presented as a lower bound, we
show that this limit is too generous. Required yield is more
than adequate for most of the cases. Second comprehensive
yield analysis is conducted in [7]. They performed an elemen-
tary logic mapping algorithm with a long runtime constraints
to acquire reliable results. Nevertheless, inefficiency of the
methods results in poor yield outcomes ranging between 5%
to 20%. Furthermore, benchmark logic functions chosen for
simulations have rather small sizes, so results are unlikely to
be realistic for logic functions with larger sizes.

Apart from these works, a clustered distribution specific
study is presented in [8] which also used an elementary
heuristic algorithm for logic mapping. This approach also
produced low yield results as well. Another important ten-
dency worth mentioning, majority of logic mapping methods
in the literature utilize 2.25 times area overheads [5]. We show
that this practice is an excessive measure and disregards the
features of logic functions and nano-crossbars. Our method
specifically tailors the yield for maximum values considering
a variety of parameters such as defect rates, logic function
sizes, and area overheads.

B. Contributions and Organization

Our contributions are as follows: 1) We cover both uni-
form and clustered defect distributions; 2) We introduce an
approximate formalization for an optimized yield considering
uniform distributions; 3) We propose a method to examine
defect distributions by dividing crossbars into sub regions; 4)
By comparing uniform and clustered defects, we formulate a
loose upper bound for yield considering clustered distributions;
and 5) We show that our method is adaptive to changing
parameters of logic functions and nano-crossbars.

The rest of the paper are as follows. In Section II, we give
preliminary concepts. In Section III, we elaborate on different
defect distributions and logic functions. In Section IV, we
study our yield model. In Section V, we present experimental
results and Section III concludes the paper.
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Fig. 1. Defect tolerant logic mapping of a given logic function.

II. PRELIMINARIES

A. Nano-crossbar Model

A nano-crossbar array consists of two layers of orthogonal
lines. Vertical and horizontal lines can be regarded as inputs
and outputs, respectively. Crosspoints/junctions of an array are
utilized as switching elements. A switch can be activated and
deactivated according to preference. A distinction between
a functional and a defective crosspoint switch is stated as
follows: 1) Configurable (functional): Switch works properly,
so both activation and deactivation are possible; and 2) Non-
configurable (defective): Switch is defective, so it is always
on a deactivated mode. This defect model is also named as
stuck-at open. In terms of logic mapping, this type of defects
are more manageable. In addition, it is possible to manipulate
fabrication process in favor of non-configurable switches. For
this reason, this paper only considers stuck-at open defects.

B. Logic Function

A logic function is a two-level Boolean function consist of
literals (variables and their negations) in a Sum-of-Products
form, for example f = P1 + P2 + P3 + P4 = x1x2 + x1x3 +
x2x3 + +x1 x2 x3.Optimal area size of a logic function is
defined as the minimum area for the realization of the function
as M×N = (# of products×# of literals). For example,
f = x1x2 + x1x3 + x2x3 + +x1 x2 x3 has 4 products and
6 literals, so M = 4 and N = 6. Logic Inclusion Ratio (IR)
is defined as a ratio of the literal count of a function to the
optimal area size. For example, if f has a literal count of 9 and
optimal area sizes are M = 4 and N = 6, then IR = 9 /24 =
37%. For logic mapping, IR shows percentage of the switches
used to realize a given function in optimal area. Conversely,
(1-IR) shows the the percentage of the unused switches.

C. Logic Mapping Process

In order to map a logic function to a nano-crossbar, in-
put and output lines are used as literals and products of a
logic function. In a defect-free nano-crossbar, every switch
is configurable, so assignment and configuration processes
for a logic function realization are straightforward. However,
defects require a mapping process to avoid non-configurable
switches. Here, we should consider that if a literal is included
in a product, crosspoint at the intersection of the corresponding

input and output lines must be activated; otherwise, corre-
sponding switch is left as deactivated.

A successful mapping means that no literal is assigned to
a non-configurable switch. In Figure 1, a successful mapping
process is shown. Different mapping methods such as inte-
ger linear programming, satisfiability, graph embedding and
bipartite matching are used [5]. In this paper, we choose two
approaches: a greedy heuristic method with matrix matching
having the smallest runtime [9] and a memetic algorithm using
bipartite matching having the highest success rate [10].

D. Nano-crossbar Yield

We define the yield as the percentage of a nano-crossbar
utilized to realize a given logic function. We use area overhead
coefficients concerning the input and output lines, for our yield
formulation.1) Input and output area overhead coefficients
(ko, ki) show the number of used input and output lines to the
optimal ones. For example, ko = 1.5, ki = 1.5 means we have
a crossbar size of 1.5.M×1.5.N where M×N is the optimal
size. 2) Yield is the ratio of optimal area size to the used area
overhead as M.N

ko.M.ki.N
= 1

ko.ki
. For example, when an optimal

size crossbar is used for a logic mapping, ko = ki = 1 and
1

ko.ki
= 1 which means 100% yield. When area overheads are

ko = ki = 1.1, yield decreases to 1
ko.ki

= 0.82 which is 82%.

III. DEFECT AND LITERAL DISTRIBUTIONS

In uniform distributions, defect occurrence probability on
every switch is a constant and an independent value. Figure
2 (c) shows the defect patterns of an uniform distribution.
Black points indicate configurable switches and white points
indicate defective (non-configurable) switches. For clustered
distributions, defects tend to cumulate around each other, so it
is not suitable to use a constant defect rate. We use a general
clustering modeling used in [11] also adopted in [8].

In short, this model initializes random probabilities for each
switch at the beginning and then appoints new defect proba-
bility to each switch by using the formulation in (1). Choosing
the range of neighbors determines the clustering patterns of a
distribution. Figure 2 (a)-(b) show different clustering patterns
of defect distributions. Mathematical notation of introducing
a defect to a switch during a time interval ∆t is as follows:

p(∆t|k, l1, ...kn) = c(x, y) + bk +

n∑
l=0

bili (1)

where c(x, y) is a susceptibility factor, b is a global clustering
factor, bi is a local clustering factor, k is the number of defects
already present, and li is the number of defects present in
neighboring circuit area. We use the same values of the given
parameters as chosen in [8] with the same defect rate as 20%.

In addition, we also study the literal distribution of logic
functions. In Figure 2 (d), literal distribution, meaning acti-
vated switches, of a logic function is shown. Black points
indicate activated switches and white points indicate unused
switches. Before explaining the distribution of literals, we
remind the reader that nano-crossbars have both variables and
their negations as input lines as shown in Figure 1. An impor-
tant feature affecting the distribution of literals is that a product
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Fig. 2. Defect rate is 20% : (a) - (b) denser to looser clustering patterns
(c) uniform distribution (d) a logic function and (e) -(f) sorted uniform and
clustered distributions.

of a logic function cannot have a variable and its negation at
the same time. Based on this observation, two constraints for
the distribution of switches are as follows: 1) At most, half of
the switches are activated in an output line; and 2) Distribution
of activated switches in an output line cannot be fully random
since an activated switch corresponding to a specific input line
necessitates a deactivated switch corresponding to the negated
input line. It is important to comply with these constraints
while generating a random logic function, otherwise yield
analysis simulations do not reflect the true nature of results.

IV. YIELD ANALYSIS OF NANO-CROSSBARS

A summary of yield parameters is as follows:

IR{r}: Logic inclusion ratio of the rth product
M ×N : Optimal size of an array
ki : Input coefficient ko : Output coefficient
Pd : Defect rate Psuc :Probability of a successful mapping
Ai: Number of defective switches in ith region
Di : Density of ith region

A. Uniform Distribution

Yield is closely related to matching probability of products
of a logic function with outputs of a nano-crossbar. In order
for a product to be successfully matched to an output line, all
activated switches must be defect-free. Since IRr.N gives the
number of activated switches in a product, (1−Pd)IRr.N gives
the probability of successful matching of a product. Therefore,
if an array has M different output lines, matching probability
of a product to an output line can be formulated with [1 −
(1 − (1 − Pd)IRr.N )M ]. Finally, multiplication of matching
probability of all products gives the probability of a successful
mapping. Formulation is:

Psuc =

M−1∏
t=0

[
1− (1− (1− Pd

ki
)IR{t+1}.N )M.ko−t

]
. (2)

Additionally, regarding (2) M.ko shows the number of out-
put lines including area overhead and Pd

ki
shows the decrease

in the defect rate to take into account that mapping with
redundant input lines are easier. Eventually, finding ki and
ko maximizing the Psuc significantly increases the likelihood
of finding a valid mapping for a given logic function. Deter-
mining the maximum yield requires the satisfactions of two
following constraints.

minimize
(
ko, ki ≥ 1

)
(3)

maximize
(
Psuc(ki, ko)

)
(4)
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Fig. 3. Subareas used for calculating the regional densities.

B. Clustered Distribution

Conventional wisdom indicates that cluster is in the eye
of the beholder, so a formal yield analysis is difficult due to
changing defect rates of nano-crossbar regions. For this reason,
we find an upper bound for yield for clustered defects.

First, we sort crossbars with uniform and clustered defects.
We decreasingly arrange input lines left to right and output
lines top to bottom according to the number of defects. Figure
2 (e)-(f) shows the sorted crossbars. After that, we divide
crossbars into subregions starting from the top left corner and
expanding the region one input and output line at a time.
Figure 3 shows progress of this operation. Finally, we compare
the defect densities of uniform and clustered distributions.

In order to find densities of regions, we define a base case
A0 as the number of defects in a M

2 ×
N
2 area and Ai’s

as the number of defects in (M
2 + i) × (N

2 + i) areas. We
found this base case experimentally as a threshold eliminating
the fluctuations of subregion densities. After that, following
formula is used for finding region densities.

Di =


A0

M
2 ×

N
2

, i = 1

(Ai−Ai−1)
M
2 +N

2 +1
, i > 1

(5)

We repeat this process by increasing the defect rate of
uniform distribution until our condition of all regional densities
of uniform distribution are equal or greater than those of
clustered distribution. In finding this rate, we exploit (3) and
(4) to determine maximum yield upper bound for clustered
defects. In Figure 4, defect density comparisons are given
with increasing Pd until our condition is met. After conducting
extensive simulations with different IRs and optimal sizes, we
determine that when defect rate of uniform distribution is 1.5
times greater than defect rate of clustered distribution.

V. EXPERIMENT RESULTS

We implement the algorithms and simulations using MAT-
LAB with a sample size of 100 defective nano-crossbars for
each case. All experiments run on a 3.30GHz Intel Core i7
CPU (only single core used) with 8GB memory.

First, we show the yield results of random benchmarks in
Table I. Even though IR and optimal size values are same,
results differ considerably for benchmarks complying the logic
function constraints and the rest. These results confirm our
claim that fully randomly generated benchmarks are unfit for
a proper yield analysis.



TABLE II
SUCCESS RATES OF TUNALI AND YUAN’S ALGORITHMS WITH PROPOSED AND 1.5 TIMES LARGER AREA OVERHEAD COEFFICIENTS, Pd = 20%

Benchmarks Tunali [9] Yuan [10]
Optimum Proposed ko, ki = 1.5, 1.5 Optimum Proposed ko, ki = 1.5, 1.5

No Name Size IR Uni Clu Uni ko ki Clu ko ki Uni Clu Uni Clu Uni ko ki Clu ko ki Uni Clu
1 xor5 16× 10 50% 76% 16% 100% 1.4 1.4 100% 1.6 1.6 100% 100% 78% 12% 100% 1.4 1.4 100% 1.6 1.6 100% 100%
2 squar5 32× 10 50% 12% 0% 100% 1.5 1 100% 1.8 1 100% 100% 14% 0% 100% 1.5 1 100% 1.8 1 100% 100%
3 bw 87× 10 40% 60% 10% 100% 1.2 1 100% 1.2 1 100% 100% 60% 14% 100% 1.2 1 100% 1.2 1 100% 100%
4 ex5p 256× 16 50% 0% 0% 100% 1.3 1 100% 1.5 1 100% 100% 0% 0% 100% 1.3 1 100% 1.5 1 100% 100%
5 apex4 438× 18 46% 0% 0% 100% 1.2 1 100% 1.3 1 100% 100% 0% 0% 100% 1.2 1 100% 1.3 1 100% 100%
6 sao2 58× 20 36% 0% 0% 100% 1.5 1 100% 1.5 1.4 100% 100% 0% 0% 100% 1.5 1 100% 1.5 1.4 100% 100%
7 table3 175× 28 41% 0% 0% 100% 1.4 1 100% 1.4 1 100% 100% 0% 0% 100% 1.4 1 100% 1.4 1 100% 100%
8 t481 481× 32 31% 0% 0% 100% 1.2 1 100% 1.2 1.1 100% 100% 0% 0% 100% 1.2 1 100% 1.2 1.1 100% 100%
9 table5 158× 34 35% 0% 0% 94% 1.3 1.2 100% 1.6 1.5 100% 100% 0% 0% 100% 1.3 1.2 100% 1.6 1.5 100% 100%
10 duke2 87× 44 20% 0% 32% 100% 1.3 1.2 100% 1.6 1.5 100% 100% 0% 50% 100% 1.3 1.2 100% 1.6 1.5 100% 100%
11 apex1 206× 90 10% 0% 58% 100% 1.2 1 100% 1.4 1.3 100% 100% 0% 70% 100% 1.2 1 100% 1.4 1.3 100% 100%
12 apex3 280× 108 8% 0% 40% 100% 1.2 1 100% 1.2 1.2 100% 100% 0% 86% 100% 1.2 1 100% 1.2 1.2 100% 100%
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Fig. 4. Comparison of regional densities for uniform and clustered distribu-
tions considering different Pd values of uniform defects.

TABLE I
SUCCESS RATES OF TUNALI’S ALGORITHM WITH DIFFERENT YIELD

VALUES REGARDING RANDOM BENCHMARKS; DEFECT RATE Pd = 20%
Bench ko, ki = 1, 1 ko, ki = 1.1, 1.1 ko, ki = 1.2, 1 ko, ki = 1, 1.2

No IR Uni Clu Uni Clu Uni Clu Uni Clu

1* 40% 0% 0% 0% 0% 0% 0% 0% 0%
2 40% 0% 0% 4% 0% 16% 0% 10% 0%

3* 35% 0% 0% 0% 0% 100% 8% 100% 2%
4 35% 4% 0% 100% 0% 100% 8% 100% 10%

5* 30% 100% 0% 100% 64% 100% 90% 100% 84%
6 30% 100% 0% 100% 64% 100% 75% 100% 76%

7* 25% 100% 6% 100% 98% 100% 98% 100% 98%
8 25% 100% 16% 100% 100% 100% 100% 100% 100%

* generated according to the logic function constraints in Section 4.

Second, we use industrial benchmarks. We utilize both
Tunali’s algorithm which has a low runtime [9] and Yuan’s
algorithm which is slower but has higher success rate [10]
to evaluate our yield values found with equations (3) and
(4). Results of conducted simulations are given in Table II.
In addition to our yield values, we include ko, ki = 1.5, 1.5
area overheads which is a common practice in the literature.
It is clear from the table that our area overhead results
for uniform and clustered defect distributions always ensure
a valid mapping considering both algorithms. Our findings,
questioning the common practices in the literature, can be
summarized as: 1) Every logic function requires different
area overhead coefficients and they are not necessarily the

same; 2) Our yield values ensure both algorithms to find a
valid mapping; and As a general tendency, increasing the area
coefficient belonging to the larger dimension of nano-crossbar
enhance the probability of finding a valid mapping.

VI. CONCLUSION

We present yield analysis of nano-crossbar arrays cover-
ing defects with uniform and non-uniform distributions. We
comment on rough yield estimations used in the literature
by showing that yield is significantly related to 1) efficiency
of the used mapping algorithms, 2) logic functions to be
implemented, and 3) defect distributions.
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