
IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 1

A Fast Hill Climbing Algorithm for Defect and
Variation Tolerant Logic Mapping of

Nano-Crossbar Arrays
Furkan Peker and Mustafa Altun

Abstract—Nano-crossbar arrays are area and power efficient structures, generally realized with self-assembly based bottom-up
fabrication methods as opposed to relatively costly traditional top-down lithography techniques. This advantage comes with a price:
very high process variations. In this work, we focus on the worst-case delay optimization problem in the presence of high process
variations. As a variation tolerant logic mapping scheme, a fast hill climbing algorithm is proposed; it offers similar or better delay
improvements with much smaller runtimes compared to the methods in the literature. Our algorithm first performs a reducing operation
for the crossbar motivated by the fact that the whole crossbar is not necessarily needed for the problem. This significantly decreases
the computational load up to 72% percent for benchmark functions. Next, initial column mapping is applied. After the first two steps that
can be considered as preparatory, the algorithm proceeds to the last step of hill climbing row search with column reordering where
optimization for variation tolerance is performed. As an extension to this work, we directly apply our hill climbing algorithm on defective
arrays to perform both defect and variation tolerance. Again, simulation results approve the speed of our algorithm, up to 600 times
higher compared to the related algorithms in the literature without sacrificing defect and variation tolerance performance.

Index Terms—Nano-crossbar Arrays; Variation Tolerance; Defect Tolerance; Worst-case Delay Optimization.

F

1 INTRODUCTION
Nano-crossbar arrays emerged as a new computing scheme
with an aim of solving the longstanding miniaturization
problems of CMOS circuits [1], [2], and [3]. Each crosspoint
of an array is used as a switching element showing field-
effect transistor (FET) like behaviour with programmability
features [4], [5], and [6]. Therefore, nano-crossbar arrays
operate similarly to conventional programmable logic ar-
rays (PLA’s) [7], [8], [9], [10], [11], and [12]. Structures of
a conventional PLA and a nano-crossbar array are given
in Figure 1. Any logic function f can be implemented
with properly placed devices on AND/OR planes along
with the corresponding input literals, for both conventional
PLA’s and nano-crossbars. For a given nano-crossbar array
structure in Figure 1, each crosspoint is either a transistor
working as a switch between the power supply and the
ground or a short circuit. If there is a transistor on a cross-
point, the corresponding literal line controls this transistor
from its gate to switch between ON and OFF states. In a case
where any of the vertical lines has a connection to ground
level, the output function f becomes logic 0.

Nano-crossbar arrays offer unique features such as small
area, low power consumption, and easy manufacturabil-
ity. Two fully operational crossbar implementations as a

• This work is part of a project that has received funding from the European
Union’s H2020 research and innovation programme under the Marie
Skodowska-Curie grant agreement No 691178. This work is supported
by the TUBITAK-Career project #113E760

• Furkan Peker and Mustafa Altun are with the Department of Electronics
and Communication Engineering, Istanbul Technical University, Istan-
bul, Turkey, 34469.

• E-mails: {pekerf, altunmus}@itu.edu.tr

VDD

GND

VDD

PRODUCTS

VDD

P
R

O
D

U
C

T
S

(a) (b)

f

f

x1 x2 x1 x2

x1

x2

x1

x2

LITERALS

L
IT

E
R

A
L

S

Fig. 1. Standard structures of (a) one-output programmable logic array
(PLA), and (b) one-output nanocrossbar array. Each crosspoint is a
switch operating as an n-type FET.

nanoprocessor and a finite-state machine are shown to be
feasible in [13] and [14]. However, high process variations
and defects are big headache that significantly effect circuit
performances, especially for delays. Consider a function
f = x1x2 + x2x3 + x1x3 to be implemented on a 3 × 3
nano-crossbar array having 3 output lines for 3 products
and 3 input lines for 3 literals. Suppose that delay of each
crosspoint varies between d and 10d where d is a minimum
delay time. Here, 6 of 9 crosspoints should be configured
as FET’s, 2 on each product line, and the rest of them
are configured as disconnected lines. Selection of these 6
crosspoints plays an important role for the worst-case delay.
There are total of 3! × 3! = 36 options to select as the
number of orderings of input and output lines, and each

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 2

selection gives a different delay value between 2d or 20d,
since there are 2 crosspoints on each product line. If we have
a chance to measure delay contribution of each crosspoint,
then by trying these 36 options we can find the best solution.
However, with an increase in the number of input lines
(n) and output lines (m), the number of options n! × m!
quickly grows beyond practical limits. After the size of only
8 × 8, it is not feasible to use an exhaustive search. Indeed
this problem, commonly known as variation tolerant logic
mapping (VTLM) problem, is an NP-Complete problem
[15].

In this work, we focus on the worst-case delay optimiza-
tion problem in the presence of high process variations.
We propose a fast hill climbing algorithm for the VTLM
problem that improves the worst-case delay up to 25%
with an average of 20% for our benchmark set and random
generated matrices. We comment that the whole crossbar
is not necessarily needed to be used for the worst-case
delay optimization problem, so our algorithm first performs
a reducing operation for the crossbar. This significantly
decreases the computational load of the algorithm, up to
72% for our standard benchmark set. Next, initial column
mapping is applied. After the first two steps that can be
considered as preparatory, the algorithm proceeds to the
last step of hill climbing row search with column reordering
where optimization for variation tolerance is performed.

Since our algorithm primarily eliminates crosspoints
with highest delay values, it can be also used for defect
tolerance by assigning relatively high delay values on de-
fective crosspoints. Thus, both defect and variation tolerance
could be achieved. However, if defects are considered, the
proposed matrix reducing approach, as the first step of the
algorithm, can not be used since all defects spreading to the
whole crossbar should be tolerated. By running our algo-
rithm for defect and variation tolerance, we see that it gives
up to 600 times lower runtimes compared to the related
algorithms in the literature without sacrificing defect and
variation tolerance performance. This certainly approves the
efficiency of the proposed algorithm.

1.1 Previous Works

Although defect/fault tolerant logic mapping for nano-
crossbars has been long studied [16], research on varia-
tion tolerance is relatively new. First, Gojman and Dehon
consider variations on crosspoint transistor parameters to
accurately determine the placement of defects as opposed
to using randomly assigned defect maps [17]. They propose
a post fabrication mapping algorithm (VMATCH) to tolerate
defects caused by variations on threshold voltage values of
crosspoint FET’s. By using independent Gaussian distribu-
tions, they determine defects such that when an ON resis-
tance of a crosspoint FET is larger than the OFF resistance,
the corresponding crosspoint is defective. As a result, this
work can be considered as a transition between defect and
variation tolerance methods. However, it does not directly
focus on variation tolerant performance optimization.

As a complete variation tolerance methodology, Tunc
and Tahoori propose a logic mapping algorithm based on
simulated annealing [18]. Additionally, they offer a delay
testing technique on nanocrossbar arrays to obtain delay

contributions of crosspoints that is needed for constructing
a variation matrix. Since the algorithm uses randomly se-
lected iterations without progress monitoring, its efficiency
is questionable; sufficient results can not be achieved unless
relatively high number of trials are reached. On the other
hand, our algorithm is designed to make a continuous
progress; that is why we call it a hill climbing algorithm.
Another approach based on linear integer programming is
proposed by Zamani et al. [15]. Although satisfactory delay
results can be achieved by this systematic method, runtime
values are even worse than those of the simulated annealing
algorithm.

Yang et al. propose a different approach for the VTLM
problem using a non-dominated sorting genetic algorithm
[19]. While finding near Pareto optimal solutions, time
overhead of this algorithm is disadvantageous. In average,
runtimes are generally much higher (×30 − 40) than ours.
In order to improve runtimes, Zhong et al. use a greedy re-
assignment technique [20], originally proposed in [21]. We
also used this method as as an alternative to initial column
mapping method and compared optimization results.

Another evolutionary algorithm is proposed by Zhong
et al. [22]; it is a bi-level multi-objective optimization al-
gorithm that uses different approaches on row and column
mappings defined as lower and upper level problems. Every
individual of an upper level problem is required to be
first solved as a lower level problem that puts too much
burden on the lower level (row order) algorithm. Therefore,
the overall algorithm performance mostly depends on the
performance of the lower level algorithm, defined as a
min–max-weight and min-weight-gap bipartite matching
problem being solved by a heuristic variant of the Hungar-
ian method. A follow-up work, fundamentally based on the
same approach, is also proposed [23]. It achieves both defect
and variation tolerance using a memetic algorithm. For both
of these algorithms, much better delay values are obtained
compared to the algorithm in [19]. However, runtime is still
an issue. Our algorithm gives delay values in the same range
while having considerably lower runtimes.

There are also studies focusing on adding extra rows or
columns for better variation tolerance at the cost of area
yield. In their work, Zamani and Tahoori use row redun-
dancies with duplicated input lines [24]. Their approach
successfully reduces the critical path delay with an aver-
age of 50%. Along with the area overhead problem, these
studies have a logical flaw: before fabrication, the amount
of redundancies should be known, but it can be determined
after fabrication (after post fabrication delay test).

Another factor of evaluation is the algorithms’ capability
to tolerate both defects and variances. Among the men-
tioned studies, the ones [18], [19], [22], and [23] can be either
directly or with slight modifications applied for defect and
variation tolerance. We consider all of these algorithms in
the experimental results part. There are other algorithms
targeting both defects and variances [25] and [26], but they
are outperformed by the considered algorithms. Note that
our algorithm is also directly applicable for defect and
variation tolerance.

1.2 Organization
Organization of this work can be summarized as follows.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 3

S

A

B

B

NMOS Array

A

Cin

Cout

VDD

Cin

GND

0 1 1 0 0 0 0

1

1

0

1

0

0 0 1 1 1 0

1 0 0 0 0 0

0 1 1 1 0 1

0 1 0 0 0 0

1 0 1 0 1 1

1 2 3 4 5 6 7

IMV

OMV

Function Matrix (FM)

S = ABCin + ABCin + ABCin + ABCin

Cout = BCin + ACin + AB

(a) (b)

1

2

3

4

5

6

Fig. 2. Mapping steps: (a) target logic functions and their function matrix,
and (b) logic mapping on a FET type nanoarray.

• We introduce preliminaries for the VTLM problem
and define our performance objectives in Section 2.

• We propose our VTLM algorithm in Section 3 with its
steps given in the subsections. In these steps, we use
a function matrix reducing, an initial column mapping,
and a hill climbing row search with column reordering
methods. In this section, we also explain how to use
the proposed algorithm for both defect and variation
tolerance.

• Experimental results are given Section 4, and Section
5 concludes this study with insights and future di-
rections.

2 PRELIMINARIES
In variation tolerant logic mapping scheme, a target logic
function and a nano-crossbar are generally represented by
matrices, called a function matrix FM and a variation ma-
trix VM , respectively. The goal of any mapping algorithm is
achieving a desired performance by determining the proper
row and column orders for FM to be mapped on VM .

A binary matrix FM indicates a logic function to be
mapped onto a nanoarray. As a general design topology,
matrix rows and columns represent function literals and
products, respectively. If a literal is included in a function
product, intersection of the corresponding row and column
is tagged as ’1’ (the crosspoint behaves as a switch); other-
wise ’0’ (the crosspoint is an open circuit; crossed lines are
disconnected). An example of FM and mapping scheme on
a nano-crossbar array is given in Figure 2.

FM(i, j) =

{
1, if ith literal is included in jth product
0, otherwise

FM Parameters: number of rows m, number of columns n,
input mapping vector IMV , output mapping vector OMV ,
and crosspoint ratio CR as the ratio of the number of 1’s to
the matrix size m× n.

As a representation of a crossbar, VM has switching
delay values of all crosspoints. These values are determined
by delay testing methods [18], explained as follows .

Delay Testing: all crosspoints act as FET type switches and
stay constant in non-controlling values (logic 1 for NAND
and logic 0 for NOR type). In this state, for each input,
tester applies falling and rising control signals while the
other inputs stay at the same non-controlling value. Here,

µ

µ+3σ µ-3σ

116 59 120 126 96

32

108

86

207

121 119 67 109

112 114 11 74

96 124 104 95

142 108 141 132

Ex.: µ = 100, σ = 30

Variation

Matrix (VM)

Nano-Crossbar

Array

Fig. 3. Variance matrix generation for a 5 × 5 crossbar array using
Gaussian distribution.

while switching an input i, transition delay value at the
output j is observed as the delay value of the crosspoint
located at (i, j). To generate VM for the VTLM process,
average rising and falling transition times are used [18].
Note that if any crosspoint delay value is relatively high
(×10) than other crosspoint delays or it does not switch
at all, it is considered as a defective crosspoint, so defect
tolerance methods applied.

For simulations, it is widely assumed that the measured
delay values show a Gaussian (Normal) distribution with
a mean µ, a standard deviation σ, and a coefficient of
variation or relative standard deviation COV = σ/µ [18],
[22], and [23]. An example of VM and a random delay value
generation scheme are given in Figure 3.

VM(i, j) =
{

crosspoint delay (j, i) with Gaussian(µ, σ2)

VM Parameters: number of horizontal lines/wires m, num-
ber of vertical lines n. Note that the sizes of FM and VM
are same; no extra crossbar redundancy is used that is a
common practice in defect tolerance.

Performance Matrix (PM) is a Hadamart product of FM
and VM matrices.

(PM)j,i = (FM)j,i(VM)j,i (1)

i = 1, 2, ...n, j = 1, 2, ...m

Since the highest column delay, sum of all delay values
in a column, represent the worst-case delay for a FET type
nanoarray, we define a row matrix FPM as a FET perfor-
mance matrix.

FPMi = Σj(PM)j,i (2)

2.1 Objectives

In the literature, three main objectives are considered
while developing variation tolerant delay optimization algo-
rithms. The first one is minimizing the worst-case delay, so
minimizing the highest valued column in FPM . The second
one is maximizing the best-case delay, so maximizing the
lowest valued column in FPM . Finally, the third one is
minimizing the difference between the worst-case and best-
case delays. Definitions of these objectives are given in
Equations 3 , 4, and 5.

Objective 1 = minimize(maximum(FPMi)) (3)

Objective 2 = maximize(minimum(FPMi)) (4)

Objective 3 = minimize(Objective 1 − Objctive 2) (5)

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 4

VM

15 23 21 32

25

27

16

24 14 14

18 18 12

11 25 24

1 1 1 0

0

1

0

1 0 0

0 1 0

0 1 1

15 23 21 0

0

27

0

24 0 0

0 18 0

0 25 24

15 23 21 32

25

27

16

24 14 14

18 18 12

11 25 24

0 1 0 0

1

1

0

1 0 1

0 0 1

0 1 1

0 23 0 0

25

27

0

24 0 14

0 0 12

0 25 24

VM

FM

1 2 3 4

1 2 4 3

1

2

3

4

2

1

3

4

Switch

Switch

Product

PM

FPM

(sum)

FPM

(sum)

PM

42 47 64 24

FM

52 47 25 50

Product

Fig. 4. An example of logic mapping optimization by interchanging row
and column pairs.

Initial Column

Mapping

Hill Climbing

Row Search

FMin

VM
Column Reordering

F
M

C

W
o
rst-C

a
se P

o
s.

T
r
ia

l C
o
u

n
t

Output

FM

V
M

Matrix

Reducing

F
M

re
d

VM

Fig. 5. Work flow of the proposed hill climbing algorithm.

In our work, we focus on Objective 1 since the worst-
case delay optimization is by far the mostly desired and
used one in the literature. On the other hand, Objective 2
is generally used for defective crossbars to especially take
into account stuck-at zero defects. Additionally, Objective 3
is valid for very specific applications requiring an almost
constant delay values.

Our general logic mapping scheme for worst-case delay
optimization is given in Figure 4. Here, we use interchange-
ability of rows and columns of the function matrix and find
a better mapping to achieve Objective 1.

3 PROPOSED ALGORITHM
In this section we introduce all stages of our hill climbing
algorithm including function matrix reducing, initial col-
umn mapping, and hill climbing row search with column
reordering. As a pre-processing method, we first use our
FM reducing method that finds unnecessary columns to be
excluded.

Next we start the mapping process. Here, the only tool
that we have is interchanging rows and columns of FM .
Since total delay values in a column determines the worst-
case delay, changing rows or columns have different effects
on Objective 1. Therefore, we should determine whether
dealing with rows or columns first. It is obvious that row
ordering followed by column ordering is constructive; per-
formance improvement is guaranteed. On the other hand,
performing column ordering after row ordering is destruc-
tive; ordering columns kills our initial effort of ordering
rows. As a result, we first perform column mapping and
then precise tuning by row search. We repeat this process

(b)

Threshold Rate (%)
0 10 20 30 40 50 60 70

0 10 20 30 40 50 60 70

Threshold Rate (%)

(a)

N
o
r
m

a
li

z
ed

W
o
rs

t-
C

a
se

 D
el

a
y

R
u

n
ti

m
e

(s
)

1

1.1

1.2

1.3

1.4

1.5

1.6

0.05

0.1

0.15

0.2

0.25

Fig. 6. Results using reduced and standard FM ’s for (a) worst-case
delays, and (b) runtimes for 32× 32 random matrix with 40% CR.

using column reorderings until a maximum number of
reorderings is reached.

Work flow of the proposed algorithm scheme is given
in Figure 5. The steps of the algorithm are given in the
following three subsections. Fourth subsection analyses
probabilistic context of our hill climbing algorithm. The fifth
subsection explains how to use the proposed algorithm for
both defect and variation tolerance.

3.1 Function Matrix Reducing

Since we are only interested in the highest valued col-
umn in FPM , relatively low valued columns having low
transistor counts which do not determine the worst-case
delay performance, are not needed. An example is given
in Figure 6. Here, we use a threshold as a percentage of the
maximum number of 1’s in a column of FM . We remove
columns having values under this threshold from FM . Then
we perform our algorithm with using the reduced form
of FM to achieve Objective 1, and compare the results
with those obtained with a standard FM , not reduced. The
figure tells us that until the threshold of nearly 65%, there is
no difference between the worst-case delay values. On the
other hand, algorithm runtime for the reduced algorithm
decreases as the threshold increases since matrix is getting
smaller. As a result, by matrix reducing, we can achieve
35% runtime improvement without any degradation for
the worst-case delay for this specific example. Motivated
by this, we propose a method that effectively finds the
threshold.

First, for each column of FM , we determine lower
and upper bounds on delay values as well as a specific
limit value. Suppose that the ith column Ci of FM has
a transistor count of Ti, representing the number of 1’s.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 5

Algorithm 1 Proposed Matrix Reducing (Using limmax as
Bound).

1: Input: FMm×n, VMm×n

2: Output: FMreduced

3: FMreduced ← FM
4: for each FM column i do
5: Ti ← transistor count of Ci

6: for each VM column j do
7: All ubi,j ← sum of the highest Ti values on VMj

8: All lbi,j ← sum of the lowest Ti values on VMj

9: end for
10: ubi ← maximum of All ubi
11: limi ← maximum of All lbi
12: end for
13: limmax ← maximum of limi

14: for each FM column i do
15: if ubi < limmax then
16: reduce Ci from FMreduced

17: end if
18: end for

For each column of VM , minimum and maximum sum of
Ti elements are determined. Considering that VM has n
columns, we have n minimum sum and n maximum sum
values for each FM column. The lower bound lbi for the
ith column Ci is the lowest value of the n minimum sum
values of Ci. The upper bound ubi is the highest value of
the n maximum sum values of Ci. Additionally, we define
another bound limi as the highest value of the n minimum
sum values.

In the next step, we find maximum valued lbi and
limi where 1 ≤ i ≤ n, and call them lbmax and limmax,
respectively. Then we check if ubi is smaller than limmax

for every i where 1 ≤ i ≤ n. If it does so, then we remove
the corresponding column from FM . The same procedure
could be applied using lbmax. Using lbmax would allow us
to remove columns without any increase on delay values.
However, since using limmax offers considerably higher
number of columns to be removed with very small delay
increases, we prefer to use it.

A pseudo code of our reducing algorithm is given in
Algorithm 1. To elucidate the algorithm, an example is given
in Figure 7. Here, 6 × 6 sized FM and VM are used.
Considering C1, it has four 1’s. In order to find n = 6
maximum sum values, sum of the 4 highest values in each
VM column is calculated. The highest value of these 6 sums
is ub1, which is found as 286 for this example. Similarly,
while finding n minimum sum values, sum of the 4 lowest
values in each VM column is calculated. Lowest value
of these 6 minimum sums is lb1 and the highest value is
lim1, which are respectively found as 111 and 210 for this
example. After finding all ubi, lbi and limi values, lbmax and
limmax values are determined as 188 and 270. Then, ubi of
each Ci is compared with lbmax or limmax to determine the
columns to be removed. Note that using limmax as bound
results in more reduced columns (C2, C4, C6) compared to
using lbmax with two reduced columns (C4, C6).

3.2 Initial Column Mapping
We treat each of the columns of FM one by one starting
from the column having the highest number of 1’s to the
lowest one. For each column of FM , first lbi is determined

1 1 1 0 1 0

0

1

0

1

1

1 1 0 0 1

0 1 0 0 1

0 1 0 1 0

0 1 0 1 0

1 0 1 1 0

C1 C2 C3 C4

MAP

C5 C6

30 46 44 42 64 44

50

54

96

72

48

48 50 28 28 36

36 74 36 24 34

90 90 50 72 58

70 72 52 42 66

64 44 94 30 50

1 2 3 4 5 6

FM VM

C1 C2 C3 C4 C5 C6

ubi

limi

lbi

ubi > lbmax

ubi > limmax

286 222 330 96 286 168

210 138 270 44 210 88

111 82 188 24 111 52

✔ ✔ ✔ ✖ ✔ ✖

✔ ✖ ✔ ✖ ✔ ✖

✔: Used ✖: Reduced

Fig. 7. An example for determining columns to be reduced considering
lbmax and limmax parameters.

in a similar way that we did in the matrix reducing step.
The only difference is that, here we determine lbi among
unmapped columns of VM as opposed to considering all of
the columns. Then, the VM column corresponding to lbi is
mapped to the column of FM . Algorithm 2 gives a pseudo
code for the proposed column mapping.

Algorithm 2 Proposed Initial Column Mapping.
1: Input: FMm×n, VMm×n, column count n
2: Output: FMinitial

3: FMsorted ← high to low sort of FM columns for ’1’ sums
4: for each FMsorted column i do
5: Ti ← transistor count of Ci

6: for each VM column j do
7: All lbi,j ← sum of the lowest Ti values on VM(j)
8: end for
9: Pos← position of minimum All lbi for Ci

10: FMinitial(Pos)← Ci

11: remove VM(Pos) column
12: end for

3.3 Hill Climbing Row Search with Column Reordering
After determining an initial column map, our algorithm
starts its search by finding a PM column having the worst-
case delay value, corresponding to the highest value in
FPM . Then, in each try, two FM rows are interchanged
such that the delay value of this worst-case column is
reduced with a maximum amount, followed by a repeat of
finding the worst-case PM column. The maximum amount
is satisfied by finding the highest and lowest values in the
VM column corresponding to 1 and 0 values in the FM
column, respectively; the corresponding FM rows are inter-
changed. This whole procedure is constantly repeated until
the new worst-case value is not smaller than the previous
one anymore. If the new worst-case value is only getting
larger, then the row search is stopped and the column
reordering starts with considering the previous case having
the most reducible worst-case delay.

After reaching a non-optimizable point, the algorithm
checks which column has the worst-case delay value for
most of the times on the previous row search step. This

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 6

column is switched with a column having the lowest transis-
tor count. After each column reordering, the algorithm goes
back to the row search. The number of column reorderings
is upper limited by the number of columns. At the end,
among all non-optimizable points, the best one is selected
as the output.

A pseudo code of the row search and column reordering
steps is given in Algorithm 3. To elucidate the algorithm,
an example is given in Figure 8 for a 12 × 12 sized array.
Here the point ’A’ represent an initial column map. Each
downward slope shows that the hill climbing row search
is in duty. Column reorderings are shown with ’B’ points.
Finally, the point ’C’ having the smallest delay among all
non-optimizable points, is selected as the output.

Algorithm 3 Proposed Hill Climbing Row Search with
Column Reordering.

1: Input: IMV,OMV , FM , VM , column count n, row count
m

2: Output: Dfinal, OMVfinal, IMVfinal

3: t← 0
4: while t < n do
5: next← 0
6: Dold ← worst-case delay for IMV,OMV, VM set
7: Pold ← Dold column position
8: while next 6= 1 do
9: Pones ← ’1’ positions on Pold column, high to low

10: Pzeros ← ’0’ positions on Pold column, low to high
11: for each index of Pones i do
12: for each index of Pzeros j do
13: IMVcur ← switch i and j on IMV
14: Dcur ← worst-case delay for IMVcur

15: Pcur ← Dcur column position
16: if Dcur < Dmy then
17: Dold ← Dcur

18: Pold ← Pcur

19: IMV ← IMVcur

20: add Pcur to Pdata matrix
21: break for loops
22: end if
23: end for
24: end for
25: if Dcur > Dold then
26: next← 1
27: end if
28: end while
29: add Dold to Ddata matrix
30: add OMV to OMVdata matrix
31: add IMV to IMVdata matrix
32: t← t+ 1
33: if t 6= n then . Column Reordering
34: Cwc ← the most repeated column on Pdata

35: M ← mean ’1’ count on FM column sums
36: Csorted ← column low to high order for ’1’ sums
37: OMV ← switch Cwc and Csorted(mod(t,M))
38: end if
39: end while
40: Dfinal ← minimum of Ddata

41: Pf ← position of Dfinal on Ddata

42: OMVfinal ← Pf th index of OMVdata

43: IMVfinal ← Pf th index of IMVdata

3.4 Probabilistic Analysis of the Proposed Algorithm
Our proposed hill climbing algorithm uses binary switching
between 0’s and 1’s of the current worst-case delay column.

A

B

B
B

B

B

B B
B

B
B

B

B

C

10 20 30 40 50 60 70 80 90 100 110
600

650

700

750

800

Iterations

Matrix: 12x12, CR: 40%, COV: 0.3
B

W
o
rs

t-
C

a
se

 D
el

a
y

0

Fig. 8. An example for the proposed row search with column reordering
processes.

If there is no better worst-case delay on the whole array
after all binary moves, algorithm considers current state as a
limit and conducts a column reordering to start search with
a new column layout. Here, we can generate a fundamental
probabilistic model to inspect algorithm characteristic.

There are two cases causing a stuck on a search. First,
binary changes on the current worst-case column do not
find a better worst-case on that particular column. Second,
there is no better worst-case delay on the whole array after
checking all binary changes. Inspecting the first case, it is
apparent that this can happen only if all the crosspoint
delays on 0 locations are higher than those on 1 locations.
Given that the number of 1’s in a column is P1, we can find
the number of 0’s as r − P1 where r is the row count. To
generalize for random arrays, we can estimate P1 as r×CR
where CR is the crosspoint ratio. Therefore, probability
of this specific failing ordering happening PStuck can be
calculated as Equation 6. Note that CR = 0.5 gives the
lowest value for this equation for any row count.

PStuck =
(r × CR)! × (r − (r × CR))!

r!
(6)

For the second case, since we do have any information
about other columns rather than being lower than the
inspected worst-case column, we can expect random out-
comes for these columns on each binary row switch. Here,
the successful case means finding a lower worst-case delay
than that corresponding to the current worst-case column.
We represent the current worst-case delay value as wc as a
condition value to each column’s probabilistic outcome. To
reach a successful binary row search, all of the columns have
to be lower than wc. This probability calculation is given in
Equation 7.

PContinue =

c−1∏
i=1

Pi(X < wc) (7)

In conclusion, we can say that our algorithm fails ei-
ther with a probability of PStuck or with a probability of
(1 − PStuck)(1 − PContinue) as given in Equation 8. Note
that finding better wc values means lower PContinue which
result as higher PFail after each search step.

PFail = PStuck + (1 − PStuck) × (1 − PContinue) (8)

From Equation 8, we can say that for a constant row
count, increasing column count always results in a higher
PFail since there would be more Pi products that de-
crease PContinue value while having constant Pstuck. This

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 7

30 46 30 42 64 44

50

54

96

72

48

48 50 28 28 36

36 74 36 24 34

90 90 50 72 58

70 72 52 42 66

64 44 94 30 50

V1 V2 V3 V4 V5 V6

VM

 46 30 64 44

50

54

96

48

48 28 36

 74 36 24

 90 72 58

70 72 52 66

64 94 30

V1 V2 V3 V4 V5 V6

DVM

Fig. 9. DVM generation from VM by representing random defects as
infinite delays.

means faster reach to the the lowest wc value to finish
row search and conduct a column reorder, which result as
lower runtimes but higher wc values. On the other hand,
for a constant column count, increasing row count means
lower Pstuck value, higher wc value, and lower coefficient
of variation value on each column. For considerably high
row counts, we expect column distributions to separate from
each other, therefore resulting as higher Pcontinue values.
These inferences are justified by simulations in Section 4.

3.5 Proposed Algorithm on Defect and Variation Toler-
ance
As an extension for our hill climbing algorithm, we con-
sider defect and variation tolerant logic mapping (DVTLM)
problem. For this purpose we only update VM as DVM
by assigning relatively high delay values, at least 100 times
larger than the delay value on 3σ, to defective crosspoints.
An example of DVM is given in Figure 9 with represent-
ing defects as infinite delays. Another note is that for the
DVTLM problem, the proposed matrix reducing approach,
as the first step of the proposed algorithm, can not be used
since all defects spreading to the whole crossbar should be
tolerated.

4 EXPERIMENTAL RESULTS
We present simulation results of our hill climbing algo-
rithm for both VTLM and DVTLM problems. To generate
FM ’s we use standard benchmarks from [27] as well as
randomly generated benchmarks. For randomly generated
benchmarks we use CR = 40%, regarding that the av-
erage CR value for standard benchmarks is around 40%.
To generate VM ’s, we assume that each crosspoint, and
correspondingly each delay value in the matrix, shows an
independent Gaussian (Normal) distribution with a mean
µ, a standard deviation σ, and a coefficient of variation
COV = σ/µ. For further evaluations, we also consider
different distributions including Weibull, exponential, and
Beta distributions.

We mainly use COV values of 0.2 that is a common
practice in the literature [23], [17], and [15], also supported
by the reports of ”International Technology Roadmap for
Semiconductors (ITRS)” [28] and [29]. We also try different
COV values between 0 and 0.3. For the DVTLM problem,
we use defect rates between 5% and 40% independently for
each crosspoint. We define a performance parameter “Delay
Optimization Rate” as an improvement percentage from
the initial worst-case delay value which occurs at random
mapping.

We select a sample size of 2000 around which average
runtime and delay values become steady. All simulations
are conducted in MATLAB with a sample size of 100 around
which average runtime and delay values become steady. All
simulations run on a 3.50GHz Intel Core i5 CPU (only single
core used) with 16GB memory.

4.1 Simulations for VTLM

We consider three state-of-the-art algorithms for compar-
ison. The first one is the memetic algorithm given in
[23]. The second one is the simulated annealing algo-
rithm given in [18]. As the third, we develped a basic
genetic algorithm which is inspired from [19] and [22].
The source code of these algorithms as well as our pro-
posed algorithm with supporting materials are available at
http://www.ecc.itu.edu.tr/images/a/a0/VTLM.zip

Before presenting time and delay values of our algo-
rithm, we evaluate the first two steps of the algorithm
called matrix reducing and initial column mapping. Note
that both of these steps are algorithm independent, so they
can be applied to any VTLM algorithm. We apply our matrix
reducing method to three different algorithms; results are
given in Table 1. Since the memetic algorithm in [23] is
specifically designed for the DVTLM problem, it is not
suitable for matrix reducing. We see that using reduced
matrices provides us an important time saving, up to 72%
at the cost of slight increase in the worst-case delay up to
3%. Note that these simulations are done using an upper
limit of limmax, previously defined in Subsection 3.1. If we
used lbmax instead of limmax, then delay increase would
not happen at all. However, time decrease rate would be
lower.

We evaluate the proposed initial column mapping tech-
nique by comparing it with random mapping and greedy
mapping method proposed in [20]; all of these methods are
used with our hill climbing algorithm. Randomly generated
benchmarks with different sizes are used for a fair compar-
ison. Results as delay optimization rates are given in Table
2. We see that the proposed technique always gives the best
result, which is 3-5% better than greedy from the literature
[20] and 10-15% than random mapping. The reason is that
the greedy mapping proposed in [20], and also used in [22],
determines lbi’s by using sums of all delay values in a VM
column. However, we select a minimum sum of Ti delay
values where Ti is the number of 1’s in the FM column to
be mapped.

In Figure 10 we compare the runtimes of the initial
column mapping step and the matrix reducing step with
the hill climbing row search plus column reordering steps
of the algorithm. We see that, the runtime overhead of the
initial column mapping and matrix reducing steps is quite
low, always smaller than 5% and gets dramatically smaller
as the matrix size increases.

The performance of our hill climbing algorithm is sum-
marized in Figure 11. Recall that the overwhelming propor-
tion of the algorithm’s computational load corresponds to
the step of row search and column reordering. Since these
steps get into each other, a similar runtime behaviour is
expected for the changes in the row and column counts.
This is shown in Figure 11 (a). However, for the delay

http://www.ecc.itu.edu.tr/images/a/a0/VTLM.zip

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 8

TABLE 1
Delay increase and time decrease rates after applying the proposed matrix reducing technique; COV = 0.2.

Proposed
Hill Climbing

Simulated
Annealing [18] Genetic Alg. [19], [22]

Benchmark (C ×R)
Reduced
Column

Ratio

Delay
Increase

Rate

Time
Decrease

Rate

Delay
Increase

Rate

Time
Decrease

Rate

Delay
Increase

Rate

Time
Decrease

Rate
5ex1 (75× 14) 71% 0.2% 64.8% 1.3% 32.26% 1.8% 4.5%
Inc (34× 14) 39% 2.6% 27.2% 0.1% 26.2% 0.5% 8.6%

clip (167× 18) 19% 0.6% 24.9% 0.3% 15.6% 0.1% 3.5%
Misex2 (29× 40) 72% 0.2% 76.4% 1.1% 26.8% 0.1% 4.48%
9sym (87× 18) - - - - - - -
Bw (65× 10) %44.3 3.1% 41.08% 1.4% 19.02% 0.6% 2.9%

Rd53 (32× 10) 4% 1.03% 10.2% 1.2% 1.56% 0.4% 3.05%
Rd73 (141× 14) 24% 0.7% 22.8% 1.12% 17.43% 0.8% 0.5%
Sao2 (58× 18) 48.2% 1.05% 24.9% 1.3% 19.86% 0.3% 2.4%

Table5 (158× 34) 44.2% 1.2% 50.6% 0.4% 34.12% 0.3% 22.6%

TABLE 2
Delay optimization rates for the proposed hill climbing algorithm having

different initial column mapping methods.
Benchmark (C ×R)

(CR: 40%)
Proposed
Greedy Greedy [20] Random

Random 1 (6×6) 21.8% 20.44% 17.45%
Random 2 (12×12) 21.82% 21.01% 17.96%
Random 3 (24×24) 22.08% 21.3% 19.21%
Random 4 (48×48) 20.84% 20.57% 18.63%

Fig. 10. Runtime comparison of the initial column mapping step, the
matrix reducing step, and the hill climbing row search with column
reordering steps for different matrix sizes on logarithmic time scale
(COV = 0.2, CR = 40%).

values, row and column counts have different effects as
shown in Figure 11 (b). Since delays are calculated column-
wise and correspondingly our algorithm aims to minimize
column delays, change in the number of columns affects
delay optimization rates more than the row change does.
Also, high row count converges to 20% delay optimization
rate because of the decreasing COV values of the columns
sums, since mean ’µ’ values multiplies with the ’1’ count
while standart deviation ’σ’ values multiplies with the root
of the ’1’ count. This property of Gaussian sums results as
more separated column delay distributions as the row count
increases. As a result, there are relatively less columns to be
optimized, which results as effective and similar results.

We also make detailed comparisons of our algorithm
with three different algorithms in the literature in Table
3. In terms of the worst-case delay, represented by “Delay
Opt. Rate”, our algorithm gives the best results in almost
all cases. Here, our algorithm has similar optimization
rate results, around 20%, for all random array sizes. This

(b)

(a)
6 6

6 6

Fig. 11. (a) Runtimes and (b) delay optimization rates of the proposed hill
climbing algorithm for different sized random arrays (COV = 0.2, CR =
40%).

proves our algorithms’ scalability for large logic functions
since other algorithm results get worse as the matrix size
increases. Also, in terms the runtime, our algorithm gives
by far the best results in all cases. Note that we run the
memetic algorithm for at most 20 seconds. The reason is
that if the algorithm does not give any solution for this time
span, then it is unlikely to get results in practical time limits.
Note that we apply initial column mapping on all of these
algorithms for a fair comparison.

In the following two subsections, we further evaluate
our algorithm for different variance values, and for different
distributions.

4.1.1 Evaluation for Different Variance Values

Depending on the manufacturing technology, COV values
might change. Future technologies might have lower or
higher variations with better manufacturing costs. There-
fore, we inspect performance of our hill climbing algorithm

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 9

TABLE 3
Delay optimization rate and runtime comparisons; COV = 0.2.

Benchmark (C ×R)
Hill Climbing Memetic Alg. Simulated Ann. Genetic Alg.

Delay
Opt. Rate Runtime (s) Delay

Opt. Rate Runtime (s) Delay
Opt. Rate Runtime (s) Delay

Opt. Rate Runtime (s)

5ex1 (75× 14) 25.7% 0.11 - >20 15.3% 0.185 22% 0.69
inc (34× 14) 20.8% 0.0096 20.6% 5.4 15% 0.67 14.5% 0.76

clip (167× 18) 19.01% 0.09 - >20 9.3% 0.18 11.2% 0.12
Misex2 (29× 40) 24.5% 0.094 15.2% 1.4 13% 0.97 11.1% 0.54
9sym (87× 18) 12.5% 0.072 - >20 8.3% 0.11 8.8% 0.78
Bw (65× 10) 20.8% 0.0078 - >20 13.7% 0.15 12.6% 0.74

Rd53 (32× 10) 19.2% 0.0086 23.1% 7.1 11.6% 0.12 10.1% 0.34
Rd73 (141× 14) 13.86% 0.038 - >20 7.8% 0.27 8.1% 0.82
Sao2 (58× 18) 17.94% 0.1 - >20 8.9% 0.16 9% 0.78

Table5 (158× 34) 16.1% 0.55 - >20 7.5% 0.59 8.3% 1.85
6× 6 (CR = 40%) 21.8% 0.0007 20.3% 1.02 20.68% 0.04 10.9% 0.53

12× 12 (CR = 40%) 21.82% 0.0025 20.6% 1.03 17.13% 0.4 19% 0.61
24× 24 (CR = 40%) 22.08% 0.015 16.1% 1.2 13.05% 0.68 11.5% 0.78
48× 48 (CR = 40%) 20.84% 0.37 10.8% 4.24 10.92% 1.45 15.3% 1.14

*Bold values/elements represent the best results

Fig. 12. For COV values between 0 and 0.3, delay optimization rates
for different algorithms on 48× 48 matrix with CR = 40%.

along with the other algorithms for different COV values
ranging from 0 to 0.3. Results are given in Figure 12. We
see that our proposed algorithm scales much better than the
other search algorithms as COV value increases.

4.1.2 Evaluation for Different Distribution Types
To inspect different possible manufacturing properties we
inspect different distributions. Along with a symmetri-
cal Gaussian distribution, we use Weibull and Beta dis-
tributions with slightly skewed curves of density func-
tions. Also we use an exponential distribution having ex-
tremely skewed density function curve. All distributions
have COV = 0.2 to preserve a fair comparison. Results are
given in Table 4. Here, compared to Gaussian distribution,
slight differences on optimization rates occur on Weibull
and Beta distributions. However, exponential distribution
has much higher rates for each algorithm due to having
extreme worst-case delays far from mean values. Exam-
ining the results we see that our algorithm’s superiority
for Gaussian distribution is more less valid for the other
distributions.

4.2 Simulations for DVTLM
We define ”Success Rate” as the ratio of cases or samples
for which all defects are tolerated to the total number of
cases. Figure 13 and Figure 14 shows success rate or our

TABLE 4
Delay optimization rate comparison of different distribution types for

different search algorithms with different sized matrices; COV = 0.2,
CR = 40%.

Algorithms Matrix
Size

Gaussian
Dist.

Weibull
Dist.

Beta
Dist.

Exp.
Dist.

Proposed
Hill

Climbing

6×6 19.01% 18.3% 19.46% 43.1%
12×12 20.3% 19.1% 22.07% 44.92%
24×24 20.9% 19.5% 22.53% 43.01%
48×48 20.14% 19% 20.77% 37.8%

Memetic
Algorithm

6×6 19.61% 19.02% 20.53% 45.65%
12×12 20.54% 19.47% 20.74% 44.13%
24×24 16.39% 16.48% 16.89% 37.12%
48×48 12.37% 12.31% 12.96% 33.26%

Simulated
Annealing

6×6 18.7% 17.7% 20.4% 41.2%
12×12 14.68% 14.3% 19.06% 30.1%
24×24 10.6% 10.8% 14.61% 21.2%
48×48 7.71% 7.72% 10.97% 15.09%

Genetic
Algorithm

6×6 10% 10.3% 9.3% 29.2%
12×12 10.9% 11.7% 10.8% 28.45%
24×24 11.1% 11.6% 11.3% 27.88%
48×48 10.1% 10.4% 9.5% 21.2%

algorithm for different defect rates and for different bench-
marks. Figure 13 tells us that increasing defect rate beyond
10% dramatically worsens the success rate, but depending
on the matrix structure 20% defect rate might be tolerated
with a high success rate. On the Figure 14 we campared
two cases; constant column count with the increasing row
count in Figure 14 (a) and and vice-versa in Figure 14 (b).
Here, increasing row count doesn’t change defect tolerance
effectiveness, since our algorithm excels on row search. On
the other hand, increasing column count decrease defect tol-
erance effectiveness since we have to tolerate more column
formations with limited row switching action.

Table 5 and Table 6 give detailed comparisons of our
algorithm with three different algorithms for 5% and 10%
defect rates, respectively. As expected, increase in defect rate
not only decrease success rate, but also worsens variation
tolerance performance. Examining the numbers, we see that
for overwhelming majority of cases, our algorithm gives
the best result. Also, results approves the superiority of our
algorithm’s speed.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 10

TABLE 5
Success rate, delay optimization rate, and runtime comparisons; 5% defect rate, COV = 0.2.

Defect
Rate: 5%

Proposed Hill
Climbing

Memetic
[23]

Simulated
Annealing [18]

Genetic
[19], [22]

Benchmark
(C ×R)

Succ.
Rate

Delay
Opt. Rate

Run
time

Succ.
Rate

Delay
Opt. Rate

Run
time

Succ.
Rate

Delay
Opt. Rate

Run
time

Succ.
Rate

Delay
Opt. Rate

Run
time

5ex1 (75× 14) 96% 16.6% 0.059 - - >20 0% - 0.16 5% 21.2% 0.75
inc (34× 14) 100% 16.4% 0.032 98% 18.9% 1.7 53% 5.5% 1.25 43% 14.3% 0.6

clip (167× 18) 2% 8.6% 0.29 - - >20 0% - 0.67 0% - 1.07
Misex2 (29× 40) 100% 24% 0.2 100% 15.3% 1.22 23% 4.8% 0.33 79% 12% 0.82
9sym (87× 18) 25% 5.1% 0.146 - - >20 0% - 0.39 0% - 0.77
Bw (65× 10) 85% 14% 0.027 - - >20 38% 4.2% 0.29 12% 12.4% 0.6

Rd53 (32× 10) 96% 12.2% 0.014 100% 21.7% 2.95 56% 5.5% 0.22 43% 10.4% 0.55
Rd73 (141× 14) 1% 6.6% 0.14 - - >20 0% - 0.5 0% - 0.81
Sao2 (58× 18) 77% 11.1% 0.084 - - >20 0% - 0.32 1% 8.3% 0.69

Table5 (158× 34) 0% - 3.01 - - >20 0% - 0.99 0% - 1.61
6× 6 (CR = 40%) 100% 21% 0.0027 100% 17.9% 1.03 100% 19.3% 0.02 99% 14.3% 0.52

12× 12 (CR = 40%) 100% 18.61% 0.006 100% 18.2% 1.05 100% 14.7% 0.3 93% 16.8% 0.59
24× 24 (CR = 40%) 100% 17.6% 0.09 100% 15.07 % 1.15 6% 6.05% 0.42 38% 13.09% 0.76
48× 48 (CR = 40%) 100% 18.9% 1.8 100% 10.2% 2.24 0% - 1.25 0% - 1.13

*Bold values/elements represent the best results

TABLE 6
Success rate, delay optimization rate, and runtime comparisons; 10% defect rate, COV = 0.2.

Defect
Rate: 10%

Proposed Hill
Climbing

Memetic
[23]

Simulated
Annealing [18]

Genetic
[19], [22]

Benchmark
(C ×R)

Succ.
Rate

Delay
Opt. Rate

Run
time

Succ.
Rate

Delay
Opt. Rate

Run
time

Succ.
Rate

Delay
Opt. Rate

Run
time

Succ.
Rate

Delay
Opt. Rate

Run
time

5ex1 (75× 14) 2% 15.7% 0.056 - - >20 0% - 0.17 0% - 0.68
inc (34× 14) 26% 10.8% 0.03 82% 17.3% 1.51 0% - 1.29 1% 14.1% 0.608

clip (167× 18) 0% - 0.32 - - >20 0% - 0.69 0% - 1.14
Misex2 (29× 40) 100% 22.1% 0.23 100% 12.9% 1.11 0% - 0.35 2% 7.1% 0.827
9sym (87× 18) 0% - 0.142 - - >20 0% - 0.41 0% - 0.76
Bw (65× 10) 14% 12.1% 0.02 - - >20 0% - 0.3 0% - 0.6

Rd53 (32× 10) 18% 8.4% 0.014 98% 20.6% 2.11 0% - 0.22 0% - 0.56
Rd73 (141× 14) 0% - 0.14 - - >20 0% - 0.51 0% - 0.8
Sao2 (58× 18) 1% 3.4% 0.09 - - >20 0% - 0.34 0% - 0.69

Table5 (158× 34) 0% - 3.03 - - >20 0% - 1.02 0% - 1.81
6× 6 (CR = 40%) 100% 14% 0.0017 100% 18.2% 1.04 95% 13.7% 0.15 97% 17.5% 0.52

12× 12 (CR = 40%) 100% 14.4% 0.008 100% 19.06% 1.02 94% 13.6% 0.32 79% 14.2% 0.59
24× 24 (CR = 40%) 97% 17.14% 0.091 100% 14.7% 1.13 0% - 0.44 0% - 0.67
48× 48 (CR = 40%) 0% - 2.03 0% - 2.2 0% - 1.36 0% - 1.13

*Bold values/elements represent the best results

Fig. 13. Success rate of our hill climbing algorithm for different bench-
marks with CR = 40%.

5 CONCLUSION

In this work, we propose a variation tolerant logic map-
ping algorithm to optimize the worst-case delay of nano-
crossbars. We show that our algorithm can be successfully
used for defect tolerance, so defect and variation tolerance
can be achieved at the same time. Simulations show that
our algorithms runs considerably faster than the previously
proposed algorithms with offering similar or better delay

(a) (b)

Fig. 14. Success rate of our hill climbing algorithm with increase in (a)
row, and (b) column size; CR = 40%.

improvements. Difference between delay optimization rates
of our algorithm and reference algorithms increases as the
matrix gets larger, which proves that our algorithm has
better scalability for real-world applications.

The proposed algorithm is technology independent that
can be used for any technology using PLA like computing
as well as for conventional CMOS PLA circuits. As a future
work, we consider modifying and improving this algorithm
for cascaded arrays to adapt real-life applications. Also,
we plan to extend this work to be applicable for transient
variations due mainly to degradations occurred in crossbars.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 11

Relatively, area yield optimizations can be performed.

REFERENCES

[1] W. Lu and C. M. Lieber, “Nanoelectronics from the bottom up,”
Nature materials, vol. 6, no. 11, pp. 841–850, 2007.

[2] A. Zhang, G. Zheng, and C. M. Lieber, “Nanoelectronics, circuits
and nanoprocessors,” in Nanowires. Springer, 2016, pp. 103–142.

[3] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani,
L. Frontini, and M. Tahoori, “Synthesis and performance optimiza-
tion of a switching nano-crossbar computer,” in Digital System
Design (DSD), 2016 Euromicro Conference on. IEEE, 2016, pp. 334–
341.

[4] M. M. Ziegler and M. R. Stan, “Cmos/nano co-design for crossbar-
based molecular electronic systems,” IEEE Transactions on Nan-
otechnology, vol. 2, no. 4, pp. 217–230, 2003.

[5] Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, and C. M. Lieber,
“Nanowire crossbar arrays as address decoders for integrated
nanosystems,” Science, vol. 302, no. 5649, pp. 1377–1379, 2003.

[6] M. Gholipour and N. Masoumi, “Design investigation of nano-
electronic circuits using crossbar-based nanoarchitectures,” Micro-
electronics Journal, vol. 44, no. 3, pp. 190–200, 2013.

[7] Y. Chen, G.-Y. Jung, D. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppe-
sen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams, “Nanoscale
molecular-switch crossbar circuits,” Nanotechnology, vol. 14, no. 4,
p. 462, 2003.

[8] G. Snider, P. Kuekes, and R. S. Williams, “Cmos-like logic in
defective, nanoscale crossbars,” Nanotechnology, vol. 15, no. 8, p.
881, 2004.

[9] G. Snider, P. Kuekes, T. Hogg, and R. S. Williams, “Nanoelectronic
architectures,” Applied Physics A, vol. 80, no. 6, pp. 1183–1195, 2005.

[10] A. DeHon and B. Gojman, “Crystals and snowflakes: building
computation from nanowire crossbars,” Computer, vol. 44, no. 2,
pp. 37–45, 2011.

[11] H. Hamoudi, “Crossbar nanoarchitectonics of the crosslinked self-
assembled monolayer,” Nanoscale research letters, vol. 9, no. 1, p.
287, 2014.

[12] M. C. Morgul, F. Peker, and M. Altun, “Power-delay-area perfor-
mance modeling and analysis for nano-crossbar arrays,” in VLSI
(ISVLSI), 2016 IEEE Computer Society Annual Symposium on. IEEE,
2016, pp. 437–442.

[13] H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C.
Ellenbogen, and C. M. Lieber, “Programmable nanowire circuits
for nanoprocessors,” Nature, vol. 470, no. 7333, pp. 240–244, 2011.

[14] J. Yao, H. Yan, S. Das, J. F. Klemic, J. C. Ellenbogen, and C. M.
Lieber, “Nanowire nanocomputer as a finite-state machine,” Pro-
ceedings of the National Academy of Sciences, vol. 111, no. 7, pp. 2431–
2435, 2014.

[15] M. Zamani, H. Mirzaei, and M. B. Tahoori, “Ilp formulations
for variation/defect-tolerant logic mapping on crossbar nano-
architectures,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 9, no. 3, p. 21, 2013.

[16] O. Tunali and M. Altun, “A survey of fault-tolerance algorithms
for reconfigurable nano-crossbar arrays,” ACM Comput. Surv.,
vol. 50, no. 6, pp. 79:1–79:35, Nov. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3125641

[17] B. Gojman and A. DeHon, “Vmatch: Using logical variation to
counteract physical variation in bottom-up, nanoscale systems,”
in Field-Programmable Technology, 2009. FPT 2009. International Con-
ference on. IEEE, 2009, pp. 78–87.

[18] C. Tunc and M. B. Tahoori, “Variation tolerant logic mapping for
crossbar array nano architectures,” in Proceedings of the 2010 Asia
and South Pacific Design Automation Conference. IEEE Press, 2010,
pp. 855–860.

[19] Y. Yang, B. Yuan, and B. Li, “Defect and variation tolerance
logic mapping for crossbar nanoarchitectures as a multi-objective
problem,” in Information Science and Technology (ICIST), 2011 Inter-
national Conference on. IEEE, 2011, pp. 1139–1142.

[20] F. Zhong, B. Yuan, and B. Li, “Hybridization of nsga-ii with
greedy re-assignment for variation tolerant logic mapping on
nano-scale crossbar architectures,” in Proceedings of the Companion
Publication of the 2014 Annual Conference on Genetic and Evolutionary
Computation. ACM, 2014, pp. 97–98.

[21] B. Yuan, B. Li, T. Weise, and X. Yao, “A new memetic algorithm
with fitness approximation for the defect-tolerant logic mapping
in crossbar-based nanoarchitectures,” IEEE Transactions on Evolu-
tionary Computation, vol. 18, no. 6, pp. 846–859, 2014.

[22] F. Zhong, B. Yuan, and B. Li, “A hybrid evolutionary algorithm
for multiobjective variation tolerant logic mapping on nanoscale
crossbar architectures,” Applied Soft Computing, vol. 38, pp. 955–
966, 2016.

[23] B. Yuan, B. Li, H. Chen, and X. Yao, “Defect-and variation-
tolerant logic mapping in nanocrossbar using bipartite matching
and memetic algorithm,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 9, pp. 2813–2826, 2016.

[24] M. Zamani and M. B. Tahoori, “Variation-aware logic mapping
for crossbar nano-architectures,” in Proceedings of the 16th Asia and
South Pacific Design Automation Conference. IEEE Press, 2011, pp.
317–322.

[25] B. Ghavami, A. Tajary, M. Raji, and H. Pedram, “Defect and
variation issues on design mapping of reconfigurable nanoscale
crossbars,” in VLSI (ISVLSI), 2010 IEEE Computer Society Annual
Symposium on. IEEE, 2010, pp. 173–178.

[26] B. Ghavami, “Joint defect-and variation-aware logic mapping of
multi-outputs crossbar-based nanoarchitectures,” Journal of Com-
putational Electronics, vol. 15, no. 3, pp. 959–967, 2016.

[27] K. McElvain, “Iwls’93 benchmark set: Version 4.0,” in Distributed as
part of the MCNC International Workshop on Logic Synthesis, vol. 93,
1993.

[28] “International technology roadmap for semiconductors,”
https://www.semiconductors.org/main/2009 international
technology roadmap for semiconductors itrs/, 2009.

[29] B. Hoefflinger, “Itrs: The international technology roadmap for
semiconductors,” in Chips 2020. Springer, 2011, pp. 161–174.

Furkan Peker recieved his BSc in Yıldız Techni-
cal University and MSc degree in İstanbul Tech-
nical University in 2014 and 2017 respectively.
He finished his BSc project with research schol-
arship from Scientific and Technological Re-
search Council of Turkey (2241/A) in 2014 with
a success and graduated as honoured student.
He finished another Scientific and Technological
Research Council of Turkey project as Synthesis
and Reliability Analysis of Nano Switching Ar-
rays with Mustafa Altun in 2017 and published

a conference paper based on this project. He is currently a research
assistant in İstanbul Technical University in İstanbul since 2014.

Mustafa Altun received his BSc and MSc
degrees in electronics engineering at Istanbul
Technical University in 2004 and 2007, respec-
tively. He received his PhD degree in electrical
engineering with a PhD minor in mathematics at
the University of Minnesota in 2012. Since 2013,
he has served as an assistant professor at Is-
tanbul Technical University and runs the Emerg-
ing Circuits and Computation (ECC) Group. Dr.
Altun has been served as a principal investiga-
tor/researcher of various projects including EU

H2020 RISE, National Science Foundation of USA (NSF) and TUBITAK
projects. He is an author of more than 30 peer reviewed papers and
a book chapter, and the recipient of the TUBITAK Success, TUBITAK
Career, and Werner von Siemens Excellence awards.

http://doi.acm.org/10.1145/3125641
https://www.semiconductors.org/main/2009_international_technology_roadmap_for_semiconductors_itrs/
https://www.semiconductors.org/main/2009_international_technology_roadmap_for_semiconductors_itrs/

	INTRODUCTION
	Previous Works
	Organization

	PRELIMINARIES
	Objectives

	PROPOSED ALGORITHM
	Function Matrix Reducing
	Initial Column Mapping
	Hill Climbing Row Search with Column Reordering
	Probabilistic Analysis of the Proposed Algorithm
	Proposed Algorithm on Defect and Variation Tolerance

	EXPERIMENTAL RESULTS
	Simulations for VTLM
	Evaluation for Different Variance Values
	Evaluation for Different Distribution Types

	Simulations for DVTLM

	CONCLUSION
	References
	Biographies
	Furkan Peker
	Mustafa Altun

