Testability of Switching Lattices in the Stuck at Fault Model

Anna Bernasconi¹, Valentina Ciriani², *Luca Frontini*²

¹Università di Pisa, Italy, anna.bernasconi@unipi.it

²Università degli Studi di Milano, Italy, {valentina.ciriani, luca.frontini}@unimi.it

Abstract

Switching lattices are two-dimensional arrays of four-terminal switches. We analyze lattices testability under the stuck-at-fault model (SAFM). Than we identify and discus properties of fully-testable lattices.

Stuck-At-Fault Model (SAFM)	Switching Lattices						
SAFM assumes that a defect causes input or output fixed to 0 or 1.	A switching lattice is a two-dimensional array of 4-terminal switches. If there is a connection between top and bottom the lattice outputs 1, 0 otherwise.	ON 9	OFF				
Definition: A <i>stuck-at fault</i> with fault location v is a tuple $(v[i], \epsilon)$ or $([i]v, \epsilon)$. $v[i]$ $([i]v)$ denotes the <i>i</i> -th input (output) pin of $v, \epsilon \in \{0, 1\}$ is the fixed constant value.	 ON switch: all terminals connected OFF switch: all terminals disconnected Each switch is controlled by a boolean literal, 1 or 0. 						
We consider stuck-at-0 (SA0) and stuck-at-1 (SA1) faults.	The synthesis problem on a lattice consists in finding an assignment of literals in We use two synthesis methods: Altun-Riedel (AR) and Gange-Søndergaard-Stuckey (TOP TOP	t o switches . GSS)	TOP				

Definition: An input *t* to a combinational logic circuit *C* is a *test* for a fault f, iff the primary output values of C on applying t in presence of f are different from the output values of C in the fault free case.

We have to determine the not-testable faults. ► A node v in C is called *fully testable*, if there does not exist a redundant fault with fault location v.

▶ If all nodes in C are fully testable, then C is called *fully* testable.

 \bar{X}_1 X_1 X_1 **X**₂ *X*₂ *X*₂ **X**₂ **X**₂ X_2 $X_{1} - X_{2} - X_{2} - X_{2}$ \bar{x}_2 \bar{X}_2 *X*₂ X_1 X_3 X_1 **X**₃ X_1 X_3 $X_2 - X_1 - X_3$ \bar{X}_3 $X_{3} - X_{2} - X_{2}$ **X**3 **X**₃ **X**₂ **X**₂ *X*₂ X_2 X_2 X_2 BOTTOM BOTTOM BOTTOM BOTTOM (d) (a) (b) (C) (a) A 4-terminal switching network of $f = \overline{x}_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 + x_2 x_3$; (b) lattice form; (c-d) lattice with input {1,1,0} and {0, 0, 1}. Grey and white squares represents ON and OFF switches.

Lattices: definitions and properties

A path is a list $I_1, I_2, \ldots, I_{m-1}, I_m$ of literals such that I_i and I_{i+1} (for $1 \le i < m$) are in adjacent cells.

Definitions:

- A path in a lattice is *unsatisfiable* (resp., *satisfiable*) if contains (resp., does not contain) both a variable x and its complement \overline{x} .
- ► The product associated to a satisfiable path is the conjunction of all literals of the path, without repetitions. The product associated to an unsatisfiable path is 0.
- ► An accepting path for a minterm v in a lattice is a satisfiable path whose associated product covers v.
- A path $I_1, \ldots, I_i, \ldots, I_m$ in a lattice L is prime w.r.t. a literal I_i ($1 \le i \le m$), if the product associated to the sequence of literals obtained removing I_i from the path is not an implicant of the function implemented by L.

Testability in the Stuck at Fault Model (SAFM)

Definitions:

- ► A literal in a lattice's switch is *0-irredundant* (resp., *1-irredundant*) if it cannot be substituted by the constant 0 (resp., 1) without changing the function computed by the lattice.
- ► A lattice is *0-irredundant* (resp., *1-irredundant*) if any literal contained in it is 0-irredundant (resp., 1-irredundant).
- A lattice is *irredundant* if it is 0-irredundant and 1-irredundant.

Proposition: An irredundant lattice is fully testable with respect to the SAFM.

Theorems:

20

48

10%

27%

5×4

8×6

Proposition: The on-set of the function $f_{L^{c}\leftarrow 1}$ ($f_{L^{c}\leftarrow 0}$) implemented by $L^{c}\leftarrow 1$ ($L^{c}\leftarrow 0$) is a superset (subset) of the on-set of f_L , i.e., $f_L^{on} \subseteq f_{I c \leftarrow 1}^{on}$ $(f_{I c \leftarrow 0}^{on} \subseteq f_L^{on})$.

 \blacktriangleright A switching lattice L with a minimum number of literals is fully testable in the SAFM.

► A SA1 in a lattice cell c with literal / is testable if and only if there exists a path p that contains the cell *c* and is prime with respect to *I*.

► A SA0 in a lattice cell *c* is testable if and only if the cell *c* is essential.

Four different mininum size lattices implementing $f = x_1x_2x_3 + x_1x_4$. (a) 0-irredundant, but not 1-irredundant lattice (b) 1-irredundant, but not 0-irredundant lattice (c) a fully testable lattice

(d) a fully testable lattice with a minimum literal number

7%

0%

7%

0%

Algorithm for irredundancy test	Experimental Results										
Algorithm for the testing of the 0-irredundancy of a cell <i>c</i> : 0-irredundant (cell <i>c</i>) INPUT: A cell <i>c</i> (containing the literal <i>I</i>) in a lattice <i>L</i> OUTPUT: true if <i>c</i> is 0-irredundant in <i>L</i> , false otherwise	 The experiments are done substituting, a single cell literal with a SA1 or a SA0. The substitution is repeated for each lattice cell The benchmarks functions are taken from a subset of LGSynth93 (580 functions). 							Synthesis Method AR12 GSS14	Average area 30 15	(<i>R</i> ₀ /area)% 20% 4.5%	(<i>R</i> ₁ /area)% 29% 4.5%
forall sub-path p_T from a top cell of L to c ($c \notin p_T$)			A	Itun-Riedel		Ga	inge-Søn	ndergaard-Stuck	ey		
if $(p_{\tau} \text{ contains } I)$ discard p_{τ} .	name	$\operatorname{col} \times \operatorname{row}$	ı area ((<i>R</i> ₀ / area)%	o (<i>R</i> ₁ / area)%	6 col $ imes$ row	area (F	R ₀ / area)% (<i>R</i> ₁	/ area)%		
if $(p - contains r)$ allocate p_r ;	addm4 (6)	10×11	110	49%	79%	6×4	24	0%	0%		
p_{μ} contains x and x) discard p_{μ} ,	b11 (3)	3×6	18	22%	56%	3×4	12	8%	8%		
eise	b7 (27)	2×5	10	0%	30%	3×3	9	22%	0%		
forall sub-path p_B from <i>c</i> to a bottom cell of <i>L</i> ($c \notin p_B$)	bench (3)	4×6	24	8%	58%	4×3	12	8%	0%		
if $(p_{R} \text{ contains } \overline{I})$ discard p_{R} ;	dc2 (1)	7×12	84	40%	62%	6×4	24	4%	13%		
if $(n_{\tau}n_{\rho})$ contains x and \overline{x} discard n_{ρ} .	ex5 (34)	10×4	40	8%	53%	6×4	24	0%	8%		
$(\rho / \rho B $ contains x and x) about a ρB ,	exps (32)	2×7	14	43%	29%	2×5	10	10%	0%		

m3 (3)

m3 (4)

if m is not in the on-set of $L^{c \leftarrow 0}$ return true;

else forall minterm m of the product associated to p_T , I, p_B

return false;

Algorithm for the testing of the 1-irredundancy of a cell c. **1-irredundant** (cell *c*)

INPUT: A cell *c* (containing the literal *I*) in a lattice *L* **OUTPUT:** true if *c* is 1-irredundant in *L*, false otherwise

forall sub-path p_T from a top cell of L to c ($c \notin p_T$)

if $(p_T \text{ contains } I)$ discard p_T ;

if $(p_T \text{ contains } x \text{ and } \overline{x})$ discard p_T ;

else

forall sub-path p_B from c to a bottom cell of L ($c \notin p_B$)

if $(p_B \text{ contains } I)$ discard p_B ;

if $(p_T p_B \text{ contains } x \text{ and } \overline{x})$ discard p_B ;

else forall minterm m of the product associated to p_T, \bar{I}, p_B if *m* is not in the on-set of *L* return true;

return false;

► The final test can be implemented using OBDD. ► The OBDDs represent *f* and all the products associated to paths *c*. • The time complexity is polynomial in OBDDs and G_1 graph size.

max128 (23)	11×12	132	33%	82%	_	_	—	—
newtag (0)	8×4	32	13%	69%	6×3	18	0%	0%
newxcpla1 (18)	10×7	70	44%	71%	3×7	9	0%	0%
p3 (10)	6×10	60	10%	67%	4×5	20	0%	15%
p82 (13)	5×7	35	29%	34%	3×5	15	0%	0%
rd53 (1)	10×10	100	18%	80%	_	_	—	—
risc (21)	2×5	10	20%	20%	2×4	8	13%	0%
root (1)	8×8	64	36%	73%	6×4	24	8%	8%
sex (4)	3×5	15	40%	27%	3×4	12	17%	17%
tms (0)	4×11	44	32%	41%	3×6	18	0%	0%

55%

42%

5×3

7×3

15

21

Conclusion

• We have analyzed the testability of switching lattices under the SAFM, and characterized the properties of fully testable lattices. ► We have proposed an algorithm to detect redundancies.

• Future work includes the design of a method to transform non testable lattices into testable ones, by replacing some literals with a constant value.

This work is part of a project that has received funding from the European Union's H2020 research and innovation programme

under the Marie Skłodowska-Curie grant agreement No 691178.

VLSI-SoC 2018, Verona, Italy