
Testability of Switching Lattices
in the Stuck at Fault Model
Anna Bernasconi1, Valentina Ciriani2, Luca Frontini2
1Università di Pisa, Italy, anna.bernasconi@unipi.it
2Università degli Studi di Milano, Italy, {valentina.ciriani, luca.frontini}@unimi.it NANOxCOMP

Abstract

Switching lattices are two-dimensional arrays of four-terminal switches. We analyze lattices testability under the stuck-at-fault model (SAFM). Than we identify and discus properties of fully-testable lattices.

Stuck-At-Fault Model (SAFM)

SAFM assumes that a defect causes input or output fixed to 0 or 1.

Definition: A stuck-at fault with fault location v is a tuple (v [i], ε) or
([i]v , ε). v [i] ([i]v) denotes the i-th input (output) pin of v , ε ∈ {0,1}
is the fixed constant value.

We consider stuck-at-0 (SA0) and stuck-at-1 (SA1) faults.

Definition: An input t to a combinational logic circuit C is a test
for a fault f , iff the primary output values of C on applying t in
presence of f are different from the output values of C in the fault
free case.

I We have to determine the not-testable faults.
I A node v in C is called fully testable, if there does not exist a

redundant fault with fault location v .

I If all nodes in C are fully testable, then C is called fully
testable.

Switching Lattices

A switching lattice is a two-dimensional array of 4-terminal switches.
If there is a connection between top and bottom the lattice outputs 1, 0 otherwise.
I ON switch: all terminals connected
I OFF switch: all terminals disconnected
I Each switch is controlled by a boolean literal, 1 or 0.

ON OFF

The synthesis problem on a lattice consists in finding an assignment of literals to switches.
We use two synthesis methods: Altun-Riedel (AR) and Gange-Søndergaard-Stuckey (GSS)

x2

x1 x3

x3 x2 x2

x2

TOP

BOTTOM
(a)

x1

x2

TOP

BOTTOM

(b)

TOP

BOTTOM

(c)

TOP

BOTTOM

(d)

x2

x1 x3

x3 x2 x2

x2x1

x2

x2

x1 x3

x3 x2 x2

x2x1

x2

x2

x1 x3

x3 x2 x2

x2x1

x2

(a) A 4-terminal switching network of f = x1x2x3 + x1x2 + x2x3; (b) lattice form; (c-d) lattice with input {1,1,0} and {0, 0, 1}.
Grey and white squares represents ON and OFF switches.

Lattices: definitions and properties

A path is a list l1, l2, . . . , lm−1, lm of literals such that li and li+1 (for 1 ≤ i < m) are in adjacent cells.

Definitions:
I A path in a lattice is unsatisfiable (resp., satisfiable) if contains (resp., does not contain) both a variable x

and its complement x .
I The product associated to a satisfiable path is the conjunction of all literals of the path, without repetitions.

The product associated to an unsatisfiable path is 0.
I An accepting path for a minterm v in a lattice is a satisfiable path whose associated product covers v .
I A path l1, . . . , li , . . . , lm in a lattice L is prime w.r.t. a literal li (1 ≤ i ≤ m), if the product associated to the

sequence of literals obtained removing li from the path is not an implicant of the function implemented by L.

TOP

BOTTOM

x2

x1 x3

x3 x2 x2

x2x1

x2

TOP

BOTTOM

x2

x1 x3

x3 x2 x2

x2x1

x2

TOP

BOTTOM

x2

x1 x3

x3 x2 x2

x2x1

x2

TOP

BOTTOM

x2

x1 x3

x3 x2 x2

x2x1

x2

Satisfiable
prime w.r.t. x3

Satisfiable
not prime w.r.t. x2

Unsatisfiable
prime w.r.t. x2

Unsatisfiable
never prime

Proposition: The on-set of the function fLc←1 (fLc←0)implemented by Lc←1 (Lc←0) is a superset (subset)
of the on-set of fL, i.e., f on

L ⊆ f on
Lc←1 (f on

Lc←0 ⊆ f on
L).

Testability in the Stuck at Fault Model (SAFM)

Definitions:
I A literal in a lattice’s switch is 0-irredundant (resp., 1-irredundant) if it cannot be

substituted by the constant 0 (resp., 1) without changing the function computed by the
lattice.

I A lattice is 0-irredundant (resp., 1-irredundant) if any literal contained in it is
0-irredundant (resp., 1-irredundant).

I A lattice is irredundant if it is 0-irredundant and 1-irredundant.

Proposition: An irredundant lattice is fully testable with respect to the SAFM.

Theorems:
I A switching lattice L with a minimum number of literals is fully testable in the SAFM.
I A SA1 in a lattice cell c with literal l is testable if and only if there exists a path p that

contains the cell c and is prime with respect to l .
I A SA0 in a lattice cell c is testable if and only if the cell c is essential.

x1 x1

x2 x4

x3 x4

(a)

x1 x1

x2 1

x3 x4

(b) (c)

x1 x1

x2 x4

x3 1

(d)

0 x1

x2 1

x3 x4

Four different mininum size lattices
implementing f = x1x2x3 + x1x4.

(a) 0-irredundant, but not 1-irredundant lattice
(b) 1-irredundant, but not 0-irredundant lattice
(c) a fully testable lattice
(d) a fully testable lattice with a minimum literal

number

Algorithm for irredundancy test

Algorithm for the testing of the 0-irredundancy of a cell c:
0-irredundant (cell c)
INPUT: A cell c (containing the literal l) in a lattice L
OUTPUT: true if c is 0-irredundant in L, false otherwise
forall sub-path pT from a top cell of L to c (c 6∈ pT)

if (pT contains l) discard pT ;
if (pT contains x and x) discard pT ;
else

forall sub-path pB from c to a bottom cell of L (c 6∈ pB)
if (pB contains l) discard pB;
if (pT pB contains x and x) discard pB;
else forall minterm m of the product associated to pT , l ,pB

if m is not in the on-set of Lc←0 return true ;
return false;

Algorithm for the testing of the 1-irredundancy of a cell c.
1-irredundant (cell c)
INPUT: A cell c (containing the literal l) in a lattice L
OUTPUT: true if c is 1-irredundant in L, false otherwise
forall sub-path pT from a top cell of L to c (c 6∈ pT)

if (pT contains l) discard pT ;
if (pT contains x and x) discard pT ;
else

forall sub-path pB from c to a bottom cell of L (c 6∈ pB)
if (pB contains l) discard pB;
if (pT pB contains x and x) discard pB;
else forall minterm m of the product associated to pT , l ,pB

if m is not in the on-set of L return true ;
return false;

I The final test can be implemented using OBDD.
I The OBDDs represent f and all the products associated to paths c.
I The time complexity is polynomial in OBDDs and GL graph size.

Experimental Results

I The experiments are done substituting, a single cell literal with a SA1 or a SA0.
I The substitution is repeated for each lattice cell
I The benchmarks functions are taken from a subset of LGSynth93 (580 functions).

Synthesis
Method

Average
area (R0/area)% (R1/area)%

AR12 30 20% 29%
GSS14 15 4.5% 4.5%

Altun-Riedel Gange-Søndergaard-Stuckey
name col × row area (R0 / area)% (R1 / area)% col × row area (R0 / area)% (R1 / area)%
addm4 (6) 10×11 110 49% 79% 6×4 24 0% 0%
b11 (3) 3×6 18 22% 56% 3×4 12 8% 8%
b7 (27) 2×5 10 0% 30% 3×3 9 22% 0%
bench (3) 4×6 24 8% 58% 4×3 12 8% 0%
dc2 (1) 7×12 84 40% 62% 6×4 24 4% 13%
ex5 (34) 10×4 40 8% 53% 6×4 24 0% 8%
exps (32) 2×7 14 43% 29% 2×5 10 10% 0%
m3 (3) 5×4 20 10% 55% 5×3 15 7% 7%
m3 (4) 8×6 48 27% 42% 7×3 21 0% 0%
max128 (23) 11×12 132 33% 82% – – – –
newtag (0) 8×4 32 13% 69% 6×3 18 0% 0%
newxcpla1 (18) 10×7 70 44% 71% 3×7 9 0% 0%
p3 (10) 6×10 60 10% 67% 4×5 20 0% 15%
p82 (13) 5×7 35 29% 34% 3×5 15 0% 0%
rd53 (1) 10×10 100 18% 80% – – – –
risc (21) 2×5 10 20% 20% 2×4 8 13% 0%
root (1) 8×8 64 36% 73% 6×4 24 8% 8%
sex (4) 3×5 15 40% 27% 3×4 12 17% 17%
tms (0) 4×11 44 32% 41% 3×6 18 0% 0%

Conclusion

I We have analyzed the testability of switching lattices under the SAFM, and characterized the properties of fully testable lattices.
I We have proposed an algorithm to detect redundancies.

I Future work includes the design of a method to transform non testable lattices into testable ones, by replacing some literals with a
constant value.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 691178.

VLSI-SoC 2018, Verona, Italy

altun
Mühür

