EHB262E Electronics II
 Homework 4

Deadline: before the final exam

Operational Amplifier
Consider an operational amplifier (OP-AMP) shown above. Assume that all MOSFETs are operating in saturation region. Also assume that input and output DC operating points are all zero. Transistors have the following parameters: $k_{p}{ }^{\prime}=\mu_{p} c_{o x}=45 \mathrm{~A} / \mathrm{V}^{2}, k_{n}{ }^{\prime}=\mu_{n} c_{o x}=80 \mathrm{~A} / \mathrm{V}^{2}$, $\mathrm{V}_{\mathrm{An}}=500, \mathrm{~V}_{\mathrm{Ap}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{T} 0, \mathrm{p}}=-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{T} 0, \mathrm{n}}=1 \mathrm{~V}$.
a) Calculate the small signal differential gain $\boldsymbol{v}_{\text {out }} /\left(\boldsymbol{v}_{\text {in2- }} \boldsymbol{v}_{\text {in1 }}\right)$ of the amplifier for the following cases. (You can assume that currents flowing on M_{7} and M_{6} are 10A and 5A, respectively).

- Case 1: The amplifier drives a load resistance of $1 \Omega\left(R_{L}=1 \Omega\right)$.
- Case 2: The amplifier drives a load resistance of $1 \mathrm{k} \Omega\left(R_{L}=1 \mathrm{k} \Omega\right)$.
b) Use the OP-AMP as a voltage follower, shown below. Construct this circuit in SPICE. Apply a sine signal to the input ($\boldsymbol{v}_{\text {in }}$) with 1 mV peak-to-peak amplitude and 1 kHz frequency. Print out $\boldsymbol{v}_{\text {out }}$ and $\boldsymbol{v}_{\text {in }}$ in time domain for different load resistance values: $R_{L}=1 \Omega$ and $R_{L}=1 \mathrm{k} \Omega$. Does $\boldsymbol{v}_{\text {out }}$ follow $\boldsymbol{v}_{\text {in }}$ for both cases? Why? Justify your answer using the results calculated in a).
- Use FDR840P and FDR6580 SPICE models for PMOS and NMOS transistors, respectively.

Voltage follower

Grading: a) 50%, b) 50%,
Note: Do not forget to attach SPICE output file prints to your homework!

