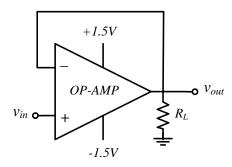

EHB262E Electronics II Homework 4

Deadline: before the final exam



Transistor	$L(\mu m)$	W (µm)
M_1	1	50
M_2	1	50
M_3	1	20
M_4	1	20
M_5	1	20
M_6	1	10
M_7	1	20
<i>M</i> ₈	1	20

Operational Amplifier

Consider an operational amplifier (OP-AMP) shown above. Assume that all MOSFETs are operating in saturation region. Also assume that input and output DC operating points are all **zero**. Transistors have the following parameters: $k_p' = \mu_p c_{ox} = 45 \text{A/V}^2$, $k_n' = \mu_n c_{ox} = 80 \text{A/V}^2$, $V_{An} = 500$, $V_{Ap} = 50V$, $V_{T0,p} = -0.9V$, $V_{T0,n} = 1V$.

- a) Calculate the small signal differential gain $v_{out} / (v_{in2}, v_{in1})$ of the amplifier for the following cases. (You can assume that currents flowing on M_7 and M_6 are 10A and 5A, respectively).
 - Case 1: The amplifier drives a load resistance of 1Ω ($R_L=1\Omega$).
 - Case 2: The amplifier drives a load resistance of $1k\Omega$ ($R_L=1k\Omega$).
- b) Use the OP-AMP as a voltage follower, shown below. Construct this circuit in SPICE. Apply a sine signal to the input (v_{in}) with 1mV peak-to-peak amplitude and 1kHz frequency. Print out v_{out} and v_{in} in time domain for different load resistance values: $R_L=1\Omega$ and $R_L=1k\Omega$. Does v_{out} follow v_{in} for both cases? Why? Justify your answer using the results calculated in a).
 - Use FDR840P and FDR6580 SPICE models for PMOS and NMOS transistors, respectively.

Voltage follower

Grading: a) 50%, b) 50%,

Note: Do not forget to attach SPICE output file prints to your homework!