ELE523E Computational Nanoelectronics Homework 1

Deadline: 17/10/2016 (before 13:30)

1. QUANTUM COMPUTING

- a) For the quantum circuit shown below, find the output quantum state and determine the probabilities of each output combination.
 - Hint: the output state can be formalized as $\sum_i \alpha_i |(ABC)_i\rangle$; you need to find α values.

b) Find the truth table of the quantum circuit shown below.

- c) Prove that Toffoli (CCNOT) gate is a universal quantum gate (in order to implement any Boolean function).
 - Hint: try to implement main Boolean operators
 - You are allowed to use $|0\rangle$ or $|1\rangle$ as gate inputs.
- **d**) Implement the Boolean function $f = x_1x_2 + x_1x_3 + x_2x_3x_4$ using *minimum* number of Toffoli gates.
 - You are allowed to use $|0\rangle$ or $|1\rangle$ as gate inputs.

2. REVERSIBLE CIRCUIT DESIGN

a) Implement the following truth tables with reversible circuits using NOT, CNOT, and Toffoli (CCNOT) gates.

b) Implement the following truth table with a reversible circuit using *minimum* number NOT and CNOT gates.

IN	OUT
<u>ba</u>	<u>ba</u>
00	11
01	01
10	10
11	00

- c) Determine the number of input/output bits of a reversible binary multiplier transformed from a 2-bit by 2-bit irreversible multiplier.
- **d**) Determine the number of input/output bits of a reversible binary multiplier transformed from a 3-bit by 3-bit irreversible multiplier.

3. FACTORIZING SEMI-PRIME NUMBERS

- a) Write an algorithm that factorizes *semi-prime numbers*.
 - Attach your pseudo and real codes (Matlab, C, etc.) to your homework.
- **b**) Determine *the worst-case time complexity* of your algorithm. Is it polynomial?
- c) Determine the success rate of your algorithm. Does it always give you the right answer?
- d) To evaluate your algorithm's performance, use semi-prime numbers 15, 77, 529, and 4633 as inputs. Determine the running time of your algorithm for each case.

Grading: 1a)5%, 1b)5%, 1c)10%, 1d)10% 2a)10%, 2b)10%, 2c)7.5%, 2d)7.5%, 3a)15%, 3b)10%, 3c)5%, 3d)5%

Note: *Return a hard-copy of your homework before the lecture; you can also put your homework under my door.*