ELE523E Computational Nanoelectronics Homework 1

Deadline: 17/10/2016 (before 13:30)

1. QUANTUM COMPUTING

a) For the quantum circuit shown below, find the output quantum state and determine the probabilities of each output combination.

- Hint: the output state can be formalized as $\sum_{i} \alpha_{i}\left|(A B C)_{i}\right\rangle$; you need to find $\boldsymbol{\alpha}$ values.

b) Find the truth table of the quantum circuit shown below.

c) Prove that Toffoli (CCNOT) gate is a universal quantum gate (in order to implement any Boolean function).
- Hint: try to implement main Boolean operators
- You are allowed to use $|0\rangle$ or $|1\rangle$ as gate inputs.
d) Implement the Boolean function $f=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} x_{4}$ using minimum number of Toffoli gates.
- You are allowed to use $|0\rangle$ or $|1\rangle$ as gate inputs.

2. REVERSIBLE CIRCUIT DESIGN

a) Implement the following truth tables with reversible circuits using NOT, CNOT, and Toffoli (CCNOT) gates.

IN cba	OUT cba
000	$\underline{001}$
001	111
010	000
011	110
100	101
101	100
110	011
111	010

b) Implement the following truth table with a reversible circuit using minimum number NOT and CNOT gates.

$\mathbf{I N}$	OUT
$\mathbf{b a}$	$\frac{\text { ba }}{}$
00	11
01	01
10	10
11	00

c) Determine the number of input/output bits of a reversible binary multiplier transformed from a 2-bit by 2-bit irreversible multiplier.
d) Determine the number of input/output bits of a reversible binary multiplier transformed from a 3-bit by 3-bit irreversible multiplier.

3. FACTORIZING SEMI-PRIME NUMBERS

a) Write an algorithm that factorizes semi-prime numbers.

- Attach your pseudo and real codes (Matlab, C, etc.) to your homework.
b) Determine the worst-case time complexity of your algorithm. Is it polynomial?
c) Determine the success rate of your algorithm. Does it always give you the right answer?
d) To evaluate your algorithm's performance, use semi-prime numbers 15, 77, 529, and $\mathbf{4 6 3 3}$ as inputs. Determine the running time of your algorithm for each case.

Grading: 1a) $5 \%, 1 b) 5 \%, 1 c) 10 \%, 1 d) 10 \%$
$2 a) 10 \%, 2 b) 10 \%, 2 c) 7.5 \%, 2 d) 7.5 \%$,
$3 a) 15 \%, 3 b) 10 \%, 3 c) 5 \%, 3 d) 5 \%$
Note: Return a hard-copy of your homework before the lecture; you can also put your homework under my door.

