Synthesis on Switching Lattices of Dimension-Reducible Boolean Functions

Marie Skłodowska-Curie grant agreement No 691178 (European Union's Horizon 2020 research and innovation programme)

Anna Bernasconi¹, Valentina Ciriani², Luca Frontini², Gabriella Trucco²

¹Dipartimento di Informatica, Università di Pisa, Italy, anna.bernasconi@unipi.it

²Dipartimento di Informatica, Università degli Studi di Milano, Italy, {valentina.ciriani, luca.frontini, gabriella.trucco}@unimi.it

NANOxCOMP

Introduction

CMOS technology

- Transistor size has shrunk for decades
- The trend reached a critical point

The Moore's Law era is coming to an end

New emerging technologies

- Biotechnologies, molecular-scale self-assembled systems
- Graphene structures
- Switching lattices arrays

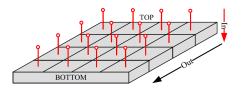
These technologies are in an early state

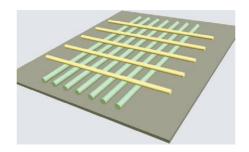
A novel synthesis approach should be focused on the properties of the devices Synthesis efficiency can be an important factor for a technology choice

We focus on Synthesis for Switching Lattices

Luca Frontini

- **Nanowires** are one of the most promising technologies
 - Nanowire circuits can be made with **self-assembled structures**
 - **pn-junctions** are built crossing *n*-type and *p*-type nanowires
 - Low V_{in} voltage makes p-nanowires conductive and n-nanowires resistive
 - **High** *V*_{in} voltage makes *n*-nanowires conductive and *p*-nanowires resistive





▲ 同 ▶ → 三 ▶

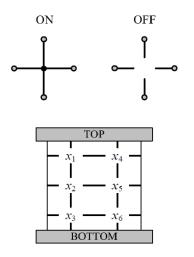
The Switching Lattices

Switching Lattices are two-dimensional arrays of four-terminal switches

- When switches are ON all terminals are connected, when OFF all terminals are disconnected
- Each switch is controlled by a boolean literal, 1 or 0
- The boolean function *f* is the SOP of the literals along each path from **top** to **bottom**
- The function synthesized by the lattice is:

$$f = x_1 x_2 x_3 + x_1 x_2 x_5 x_6 +$$

 $+x_4x_5x_2x_3 + x_4x_5x_6$

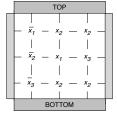


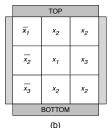
▶ < ∃ >

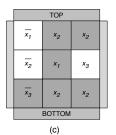
From Crossbars to Lattices

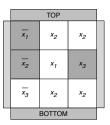
For an easier representation, the **crossbars** are converted to **lattices**:

- A 'checkerboard' notation is used
- Darker and white sites represent ON and OFF
- a), b): the 4-terminal switching network and the lattice describing
 f = x
 ₁x
 ₂x
 ₃ + x
 ₁x
 ₂ + x
 ₂x₃
- c), d): the lattice evaluated on inputs (1,1,0) and (0,0,1)









(d)

- * 🗇 * - * 注 * - * 注

The synthesis methods

Altun-Riedel, 2012

- Synthesizes f and f^D from top to bottom and left to right
- It produces lattices with size growing **linearly** with the SOP
- Time **complexity is polynomial** in the number of products

		TC	OP		
LEFT	₹ ₆	₹8	\bar{x}_6	X 4	
	₹ ₈	₹ ₈	X ₅	X ₄	
	X 6	₹ ₇	X 6	X ₄	İ
	X ₇	X 7	X ₅	X 4	RIC
	₹ ₆	X 5	X 6	X 4	SHT
	X_1	x ₁	X_1	X ₁	
	X 2	X 2	X ₂	X 2	
	X 3	X 3	X 3	X ₃	
	BOTTOM				

Gange-Søndergaard-Stuckey, 2014

- *f* is synthesized from **top to bottom**
- The synthesis problem is formulated as a **satisfiability problem**, then the problem is solved with a SAT solver
- The synthesis method searches for better implementations starting from an upper bound size
- The synthesis loses the possibility to generate both *f* and *f*^D

TOP				
x ₄	₹ ₆	X 7		
Χ ₂	Χ ₅	₹ ₈		
x ₁	Χ ₂	₹ ₆		
X ₃	0	х ₆		
воттом				

In both examples the synthesized function is:

 $f = \overline{x}_8 \overline{x}_7 \overline{x}_6 x_3 \overline{x}_2 x_1 + \overline{x}_8 \overline{x}_7 \overline{x}_5 x_3 \overline{x}_2 x_1 + x_4 x_3 \overline{x}_2 x_1 + x_5 x_5 x_5 \overline{x}_2 x_1 + x_5 x_5 x_5 \overline{x}_2 x_1 + x_5 \overline{x}_2 x_2 + x_5 \overline{x}_2 x_1 + x_5 \overline{x}_2 x_2 + x_5 \overline{x}_2 +$

Synthesis on Switching Lattices of Dimension-Reducible Boolean Functions

Decomposition Techniques and Lattices

The logic synthesis of 4-terminal switches can be very computational intensive

Boolean function decomposition techniques

- decompose a function according to a given decomposition scheme
- implement the decomposed blocks into a single lattice
- decomposed functions have less variables and/or a smaller on-set
- the implementation may be **smaller** and the synthesis **less computational intensive**

We use a decomposition based on D-reducible functions:

$$f = \chi_A \cdot f_A$$

- χ_A is the characteristic function of A
- f_A is the projection of f onto A

A (1) N (4) (1) N (4)

D-reducible Boolean functions

A function $f : \{0,1\}^n \to \{0,1\}$ is *D*-reducible if its ON-set is contained in an affine space $A \subseteq \{0,1\}^n$, of dimension strictly smaller than *n*.

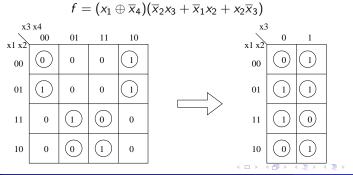
A D-reducible function f is contained in an affine space A smaller than $\{0,1\}^n$

$$f = \chi_A \cdot f_A$$

- A is the unique associated space
- χ_A is the characteristic function of A
- *f_A* is the projection of *f* onto A
- *f* and *f_A* have the same number of points, but the points of *f_A* are compacted in a smaller space
- the 70% of classical $\mathrm{Esp}_{\mathrm{RESSO}}$ benchmark suite have at least one output that is D-reducible
- we want to analyze how this decomposition can be exploited in the switching lattice synthesis process

$$f = \overline{x}_1 x_3 \overline{x}_4 + \overline{x}_1 x_2 \overline{x}_4 + x_1 \overline{x}_2 x_3 x_4 + x_1 x_2 \overline{x}_3 x_4$$

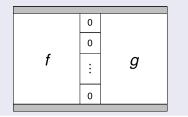
- f is D-reducible
- we can project it onto a space of dimension three.
- f and f_A have the same number of points, but the point of f_A are now compacted in a smaller space
- $f_A = \overline{x}_2 x_3 + \overline{x}_1 x_2 + x_2 \overline{x}_3$ and $(x_1 \oplus \overline{x}_4)$ represents the the associated affine space A



Disjunction and conjunction of lattices

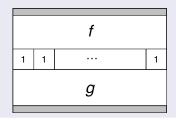
f + g

- separate the paths from top to bottom for f and g
- add a column of 0s
- add padding rows of 1s if lattices have different number of rows



$f \cdot g$

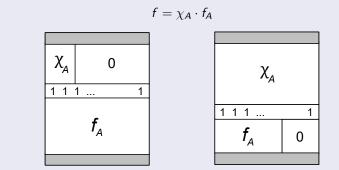
- any top-bottom path of f is joined to any top-bottom path of g
- add a row of 1s
- add padding columns of 0s if lattices have different number of columns



▲ 同 ▶ → 三 ▶

D-reducible functions lattice implementation

A lattice for a D-reducible function is obtained merging the lattice of χ_A and the projection f_A , placed in physically separated regions of a single lattice.



both f_A and χ_A depends on fewer variables than f:

- the synthesis should be less computational intensive
- it is possible that the final lattice has a smaller area

Luca Frontini

2D-Red: Two-variables EXOR

2D-Reducible functions

- we focus our work on a subset of D-Red functions: 2D-Red
- the affine space of 2D-Red can be represented by products (AND) of two literals EXOR
- two-variable EXOR factors lattices are simple to synthesize
- the dimension of a two-variables EXOR lattice is 2×2

$$f_{EXOR} = x_1 \oplus x_2$$

$$\begin{array}{c|c} \mathbf{X}_1 & \overline{\mathbf{X}}_1 \\ \hline \overline{\mathbf{X}}_2 & \mathbf{X}_2 \end{array}$$

For instance, $\chi_A = (x_1 \oplus \overline{x}_3) \cdot (x_2 \oplus x_4) \cdot \overline{x}_5 \cdot (x_1 \oplus x_8)$, subspace of $\{0, 1\}^8$

$$\begin{cases} x_1 \oplus \overline{x}_3 &= 1 \\ x_2 \oplus x_4 &= 1 \\ \overline{x}_5 &= 1 \\ x_1 \oplus x_8 &= 1 \end{cases} \implies \begin{cases} x_1 &= x_3 \\ x_2 &= \overline{x}_4 \\ x_5 &= 0 \\ x_1 &= \overline{x}_8 \end{cases}$$

are derived the equalities:

result: partition of a subset of the input variables:

$$\{\{0, x_5\}, \{x_1, x_3, \overline{x}_8\}, \{x_2, \overline{x}_4\}\},\$$

standard synthesis:

			_
x ₁	x ₁	x 3	x ₃
×2	x ₄	x ₂	x ₄
x 4	$\overline{x_2}$	$\overline{x_4}$	<u>x</u> 2
×3	×3	×8	×8
x ₈	x ₈	$\overline{x_1}$	x ₁
$\overline{x_5}$	$\overline{x_5}$	$\overline{x_5}$	x 5

2-EXOR synthesis:

	_
x ₁	$\overline{x_1}$
×3	$\overline{x_3}$
<u>x</u> 8	×8
x ₅	$\overline{x_5}$
×2	$\overline{x_2}$
x ₄	<i>x</i> ₄

Theorem

- Let A be an affine subspace of $\{0,1\}^n$ described by the product of single literals and two literals EXOR
- let P_A be the partition of the subset of input variables that defines A, and let $n' \leq n$ be the number of distinct variables occurring in P_A .
- Suppose that P_A contains ℓ subsets of literals, in addition to the subset C with the constant 0.
- let c be the number of literals in C.

Then A can be implemented with a lattice of area $r \times 2$, where the number r of rows is given by

$$r = \begin{cases} n' & \text{if } c \ge \ell - 1 \\ n' + \ell - 1 - c & \text{if } c < \ell - 1 \end{cases}$$

Synthesis example

 $f = x_1 x_2 \overline{x}_3 \overline{x}_4 x_5 x_8 x_9 x_{10} x_{11} + x_2 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 x_8 x_9 x_{10} x_{11} + x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 \overline{x}_7 x_8 + x_1 \overline{x}_2 x_3 x_4 \overline{x}_7 x_8 + x_1 \overline{x}_2 \overline{x}_3 \overline{x}_4 \overline{x}_5 \overline{x}_7 x_8 + x_1 \overline{x}_2 x_3 x_4 \overline{x}_7 x_8$

 $f_{A} = \overline{x}_{2}x_{3}\overline{x}_{7} + \overline{x}_{2}\overline{x}_{5}\overline{x}_{7} + x_{2}\overline{x}_{3}x_{5}\overline{x}_{6} + \overline{x}_{2}x_{3}x_{9}x_{10}x_{11} + x_{2}\overline{x}_{3}x_{5}x_{9}x_{10}x_{11}$ $\chi_{A} = x_{1}x_{8}(\overline{x_{3} \oplus x_{4}})$

$\overline{X_4}$	X2	$\overline{X_2}$	X2	$\overline{X_2}$	X ₂
X2	$\overline{X_5}$	$\overline{X_5}$	X 4	$\overline{X_5}$	$\overline{X_5}$
$\overline{\chi_3}$	X 3	$\overline{X_3}$	X 4	$\overline{X_3}$	X 4
X5	$\overline{\chi_2}$	$\overline{\chi_2}$	X2	$\overline{\chi_2}$	$\overline{X_2}$
$\overline{X_4}$	$\overline{X_4}$	$\overline{X_4}$	Х3	$\overline{X_4}$	Хз
X_1	X_1	X_1	X_1	X_1	X1
X11	X11	$\overline{X_7}$	$\overline{X_7}$	$\overline{X_7}$	<u>X</u> 7
X9	Х9	<u>X</u> 7	$\overline{X_7}$	<u>X</u> 7	<u>X</u> 7
X10	X10	$\overline{\chi_7}$	$\overline{\chi_7}$	$\overline{X_7}$	X 7
X8	X8	X8	X8	X8	X8

X3 X4 X1 X8 1 X5	0 0 0 1 X 3
X1 X8 1	0 0 1
X8 1	0
1	1
-	-
X5	X 3
X2	X2
1	X5
X7	<u>X</u> 3
X 7	$\overline{X_7}$
	1 X7 X7

- Benchmarks are taken from LGSynth93
- Each benchmark output is considered as a separate boolean function
- A total of 385 functions
- We evaluate the results just for two literals EXOR
- We use a collection of Python scripts and a SAT solver to perform the Gange-Søndergaard-Stuckey synthesis
- The algorithm has been implemented in C
- The experiments have been run on a machine with 16 CPU @2.5 GHz, running Centos 6.6

▲ 同 ▶ → ▲ 三 ▶

	not decomposed	decomposed		
	standard	D-red	XΑ	f _A
f-Name	Col×Row	Col×Row	Col×Row	Col×Row
amd(5)	6×2	2×8	2 × 6	2 × 2
amd(7)	5×5	3×6	1 imes 1	3 × 5
exp(6)	5×4	3×7	1×2	3 × 5
exp(10)	6×12	6×5	1 × 2	5×4
in2(7)	17×26	17×26	1 imes 1	17 imes 25
t1(0)	6×9	3 ×8	1 imes 1	3 × 7
t1(1)	7×9	7×9	1 imes 1	7 × 8

イロト イヨト イヨト イヨト

Decomposing the D-reducible functions we obtain:

- More compact area in 15% of cases
- Average area reduction of about 24%
- Average computing time reduction of about 50%
- In many cases the method Gange-Søndergaard-Stuckey fails in computing a result in a reasonable time
- We set a maximum of ten minutes for each SAT execution
- If synthesis is stopped we use the synthesis method by Altun-Riedel

- A new method for the synthesis of lattices with reduced size
- Based on decomposition of **D-reducible function**
- The lattice synthesis benefits from this decomposition:
 - smaller lattices: at least 24% of area reduction in 15% of functions
 - average reduction of computing time by 50%

In future works we will apply more complex type of decompositions

- considering D-reducible functions, with affine spaces described with EXOR factors of fan-in greater than two
- other decomposition methods

< 同 > < 三 >