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Introduction

CMOS technology

• Transistor size has shrunk
for decades

• The trend reached a critical
point

The Moore’s Law era is coming
to an end

New emerging technologies

• Biotechnologies, molecular-scale
self-assembled systems

• Graphene structures

• Switching lattices arrays

These technologies are in an early state

A novel synthesis approach should be focused on the properties
of the devices

Synthesis efficiency can be an important factor for a
technology choice

We focus on Synthesis for Switching Lattices
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How Switching Lattices are made

Nanowires are one of the most
promising technologies

• Nanowire circuits can be
made with self-assembled
structures

• pn-junctions are built
crossing n-type and p-type
nanowires

• Low Vin voltage makes
p-nanowires conductive and
n-nanowires resistive

• High Vin voltage makes
n-nanowires conductive and
p-nanowires resistive
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The Switching Lattices

Switching Lattices are two-dimensional arrays of four-terminal switches

• When switches are ON all
terminals are connected, when
OFF all terminals are disconnected

• Each switch is controlled by a
boolean literal, 1 or 0

• The boolean function f is the
SOP of the literals along each
path from top to bottom

• The function synthesized by the
lattice is:
f = x1x2x3 + x1x2x5x6 +
+x4x5x2x3 + x4x5x6
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From Crossbars to Lattices

For an easier representation, the
crossbars are converted to
lattices:

• A ‘checkerboard’ notation is
used

• Darker and white sites
represent ON and OFF

• a), b): the 4-terminal
switching network and the
lattice describing
f = x1x2x3 + x1x2 + x2x3

• c), d): the lattice evaluated
on inputs (1,1,0) and
(0,0,1)
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The synthesis methods

Altun-Riedel, 2012

• Synthesizes f and f D from top
to bottom and left to right

• It produces lattices with size
growing linearly with the SOP

• Time complexity is polynomial
in the number of products
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Gange-Søndergaard-Stuckey, 2014

• f is synthesized from top to bottom

• The synthesis problem is formulated
as a satisfiability problem, then the
problem is solved with a SAT solver

• The synthesis method searches for
better implementations starting from
an upper bound size

• The synthesis loses the possibility to
generate both f and f D

BOTTOM

x7x4

x3

x5 x8

x2

0

TOP

x6

x6

x6

x2

x1

In both examples the synthesized function is:
f = x8x7x6x3x2x1 + x8x7x5x3x2x1 + x4x3x2x1
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Decomposition Techniques and Lattices

The logic synthesis of 4-terminal switches can be very computational intensive

Boolean function decomposition techniques

• decompose a function according to a given decomposition scheme

• implement the decomposed blocks into a single lattice

• decomposed functions have less variables and/or a smaller on-set

• the implementation may be smaller and the synthesis less computational
intensive

We use a decomposition based on D-reducible functions:

f = χA · fA

• χA is the characteristic function of A

• fA is the projection of f onto A
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D-reducible Boolean functions

A function f : {0, 1}n → {0, 1} is D-reducible if its ON-set is contained in an
affine space A ⊆ {0, 1}n, of dimension strictly smaller than n.

A D-reducible function f is contained in an affine space A smaller than {0, 1}n

f = χA · fA

• A is the unique associated space

• χA is the characteristic function of A

• fA is the projection of f onto A

• f and fA have the same number of points, but the points of fA are compacted
in a smaller space

• the 70% of classical Espresso benchmark suite have at least one output
that is D-reducible

• we want to analyze how this decomposition can be exploited in the switching
lattice synthesis process
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Example of D-red function

f = x1x3x4 + x1x2x4 + x1x2x3x4 + x1x2x3x4

• f is D-reducible
• we can project it onto a space of dimension three.
• f and fA have the same number of points, but the point of fA are now

compacted in a smaller space
• fA = x2x3 + x1x2 + x2x3 and (x1 ⊕ x4) represents the the associated affine

space A

f = (x1 ⊕ x4)(x2x3 + x1x2 + x2x3)
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Disjunction and conjunction of lattices

f + g

• separate the paths from top
to bottom for f and g

• add a column of 0s

• add padding rows of 1s if
lattices have different number
of rows

f · g
• any top-bottom path of f is

joined to any top-bottom
path of g

• add a row of 1s

• add padding columns of 0s if
lattices have different number
of columns
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D-reducible functions lattice implementation

A lattice for a D-reducible function is obtained merging the lattice of χA and
the projection fA, placed in physically separated regions of a single lattice.

f = χA · fA
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both fA and χA depends on fewer variables than f :

• the synthesis should be less computational intensive

• it is possible that the final lattice has a smaller area
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2D-Red: Two-variables EXOR

2D-Reducible functions
• we focus our work on a subset of D-Red functions: 2D-Red

• the affine space of 2D-Red can be represented by products (AND) of two
literals EXOR

• two-variable EXOR factors lattices are simple to synthesize

• the dimension of a two-variables EXOR lattice is 2×2

fEXOR = x1 ⊕ x2

x1 x1

x2 x2
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Two-variables Exor and literals

For instance, χA = (x1⊕ x3) · (x2⊕ x4) · x5 · (x1⊕ x8),
subspace of {0, 1}8

x1 ⊕ x3 = 1
x2 ⊕ x4 = 1

x5 = 1
x1 ⊕ x8 = 1

=⇒


x1 = x3

x2 = x4

x5 = 0
x1 = x8

are derived the equalities:

x1 = x3 = x8

x2 = x4

x5 = 0 ,

result: partition of a subset of the input variables:

{{0, x5}, {x1, x3, x8}, {x2, x4}} ,

standard synthesis:
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Two literals Exor – theorem

Theorem

• Let A be an affine subspace of {0, 1}n described by the product of single
literals and two literals EXOR

• let PA be the partition of the subset of input variables that defines A, and let
n′ ≤ n be the number of distinct variables occurring in PA.

• Suppose that PA contains ` subsets of literals, in addition to the subset C
with the constant 0.

• let c be the number of literals in C .

Then A can be implemented with a lattice of area r × 2, where the number r of
rows is given by

r =

{
n′ if c ≥ `− 1
n′ + `− 1− c if c < `− 1
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Synthesis example

f = x1x2x3x4x5x8x9x10x11 + x2x2x3x4x5x8x9x10x11 + x1x2x3x4x5x7x8+
+x1x2x3x4x7x8 + x1x2x3x4x5x7x8 + x1x2x3x4x7x8

fA = x2x3x7 + x2x5x7 + x2x3x5x6 + x2x3x9x10x11 + x2x3x5x9x10x11

χA = x1x8(x3 ⊕ x4)
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Experiments

• Benchmarks are taken from LGSynth93

• Each benchmark output is considered as a separate boolean function

• A total of 385 functions

• We evaluate the results just for two literals EXOR

• We use a collection of Python scripts and a SAT solver to perform the
Gange-Søndergaard-Stuckey synthesis

• The algorithm has been implemented in C

• The experiments have been run on a machine with 16 CPU @2.5 GHz,
running Centos 6.6
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The Experiments

not decomposed decomposed
standard D-red χA fA

f -Name Col×Row Col×Row Col×Row Col×Row
amd(5) 6×2 2×8 2× 6 2× 2
amd(7) 5×5 3×6 1× 1 3× 5
exp(6) 5×4 3×7 1× 2 3× 5
exp(10) 6×12 6×5 1× 2 5× 4
in2(7) 17×26 17×26 1× 1 17× 25
t1(0) 6×9 3×8 1× 1 3× 7
t1(1) 7×9 7×9 1× 1 7× 8
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Results of the Experiments

Decomposing the D-reducible functions we obtain:

• More compact area in 15% of cases

• Average area reduction of about 24%

• Average computing time reduction of about 50%

• In many cases the method Gange-Søndergaard-Stuckey fails in computing a
result in a reasonable time

• We set a maximum of ten minutes for each SAT execution

• If synthesis is stopped we use the synthesis method by Altun-Riedel
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Conclusions

• A new method for the synthesis of lattices with reduced size

• Based on decomposition of D-reducible function

• The lattice synthesis benefits from this decomposition:
• smaller lattices: at least 24% of area reduction in 15% of functions
• average reduction of computing time by 50%

In future works we will apply more complex type of decompositions

• considering D-reducible functions, with affine spaces described with EXOR
factors of fan-in greater than two

• other decomposition methods
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