## EHB222E Introduction to Electronics Homework 1

Deadline: 02/03/2015 (before the lecture)

- 1. Silicon is doped with Boron having a concentration of  $10^{11}$  /cm<sup>3</sup>. Calculate the free electron and hole concentrations, *n* and *p*, respectively. Suppose that  $n_i = 4 \ 10^{10}$  /cm<sup>3</sup>.
- 2. Assume that you a p-n diode has the following specific resistances:  $\rho_n = 0.35 \ \Omega cm$  and  $\rho_p = 0.7 \ \Omega cm$ . Additionally,  $n_i = 10^{10} / cm^3$ ,  $q = 1.6 \ 10^{-19} \ C$ ,  $\varepsilon_{r-Si} = 12$ ,  $\varepsilon_o = 8.85 \ 10^{-12} \ F/m$  ( $\varepsilon_{Si} = \varepsilon_{r-Si} \ \varepsilon_o$ ),  $V_T = 25 \ mV$ . Also  $D_n = 36 \ cm^2/s$ ,  $D_p = 16 \ cm^2/s$ ,  $\tau_n = \tau_p = 0.8 \ \mu sec$ . a. Find the built in voltage  $V_0$ .
  - b. Find the depletion region width in zero bias (no voltage applied).
  - c. For a junction area of  $0.1 \text{ mm}^2$ , calculate the current through your diode when it is forward biased at 0.7 V.
- **3.** A p-n diode is modeled with the exponential model. The diode currents are measured 1,36 mA and 7,20 mA when 0,7 V and 0,75 V applied, respectively. Determine the saturation current  $I_S$  and the ideality factor n (from nV<sub>T</sub>). Suppose that V<sub>T</sub> = 25 mV.
- 4. Find the values of *I* and *V* for the circuits shown. Use the **ideal I-V model** for diodes.



5. Find the current and voltage values of the Zener diodes *I*<sub>D1</sub>, *V*<sub>D1</sub>, *I*<sub>D2</sub>, and *V*<sub>D2</sub>. Use the constant drop model, shown in Figure 2, for Zener diodes.





Figure 2: 0,7 V forwad bias and 3 V Zener voltages

Figure 1

6. Use a constant drop model for the Zener diode in Figure 1. The model has 0,7 V forwad bias and 2 V Zener ( $V_Z=2V$ ) voltage. An input signal, shown in Figure 2, is applied. Sketch  $v_o$ ,  $i_{D1}$ , and  $i_{D2}$ , in time domain. Justify your answer.



Figure 1

Figure 2

Grading: 1)10 %, 2)15 %, 3)15 %, 4)20 %, 5)20 %, 6)20 %