EHB222E Introduction to Electronics Homework 1
 Deadline: 02/03/2015 (before the lecture)

1. Silicon is doped with Boron having a concentration of $10^{11} / \mathrm{cm}^{3}$. Calculate the free electron and hole concentrations, \boldsymbol{n} and \boldsymbol{p}, respectively. Suppose that $\mathrm{n}_{\mathrm{i}}=410^{10} / \mathrm{cm}^{3}$.
2. Assume that you a p-n diode has the following specific resistances: $\rho_{\mathrm{n}}=0,35 \Omega \mathrm{~cm}$ and $\rho_{\mathrm{p}}=0,7 \Omega \mathrm{~cm}$. Additionally, $\mathrm{n}_{\mathrm{i}}=10^{10} / \mathrm{cm}^{3}, \mathrm{q}=1,610^{-19} \mathrm{C}, \varepsilon_{\mathrm{r}-\mathrm{Si}}=12, \varepsilon_{\mathrm{o}}=8,8510^{-12} \mathrm{~F} / \mathrm{m}$ $\left(\varepsilon_{\mathrm{Si}}=\varepsilon_{\mathrm{r}-\mathrm{Si}} \varepsilon_{\mathrm{o}}\right), \mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}$. Also $\mathrm{D}_{\mathrm{n}}=36 \mathrm{~cm}^{2} / \mathrm{s}, \mathrm{D}_{\mathrm{p}}=16 \mathrm{~cm}^{2} / \mathrm{s}, \tau_{\mathrm{n}}=\tau_{\mathrm{p}}=0,8 \mu \mathrm{sec}$.
a. Find the built in voltage $\mathbf{V}_{\mathbf{o}}$.
b. Find the depletion region width in zero bias (no voltage applied).
c. For a junction area of $0,1 \mathrm{~mm}^{2}$, calculate the current through your diode when it is forward biased at $0,7 \mathrm{~V}$.
3. A p-n diode is modeled with the exponential model. The diode currents are measured $1,36 \mathrm{~mA}$ and $7,20 \mathrm{~mA}$ when $0,7 \mathrm{~V}$ and $0,75 \mathrm{~V}$ applied, respectively. Determine the saturation current I_{S} and the ideality factor $\boldsymbol{n}\left(\right.$ from $\left.n V_{T}\right)$. Suppose that $\mathrm{V}_{\mathrm{T}}=25 \mathrm{mV}$.
4. Find the values of \boldsymbol{I} and \boldsymbol{V} for the circuits shown. Use the ideal $\mathbf{I}-\mathbf{V}$ model for diodes.

a)

b)

c)

d)
5. Find the current and voltage values of the Zener diodes $\boldsymbol{I}_{\boldsymbol{D} \boldsymbol{1},} \boldsymbol{V}_{\boldsymbol{D} \boldsymbol{I}}, \boldsymbol{I}_{\boldsymbol{D} \boldsymbol{2}}$, and $\boldsymbol{V}_{\boldsymbol{D} 2}$. Use the constant drop model, shown in Figure 2, for Zener diodes.

Figure 1

Figure 2: $0,7 \mathrm{~V}$ forwad bias and 3 V Zener voltages
6. Use a constant drop model for the Zener diode in Figure 1. The model has $0,7 \mathrm{~V}$ forwad bias and 2 V Zener $\left(\mathrm{V}_{\mathrm{Z}}=2 \mathrm{~V}\right)$ voltage. An input signal, shown in Figure 2, is applied. Sketch $\boldsymbol{v}_{\boldsymbol{o}}, \boldsymbol{i}_{\boldsymbol{D} \mathbf{1}}$, and $\boldsymbol{i}_{\boldsymbol{D} \boldsymbol{2}}$, in time domain. Justify your answer.

Figure 1

Figure 2

Grading: 1) 10%, 2)15 \%, 3) $15 \%, 4) 20 \%, 5) 20 \%, 6) 20 \%$

