
Synthesis and Performance Optimization of a
Switching Nano-crossbar Computer

Dan Alexandrescu
IROC Technologies
Grenoble, France

dan.alexandrescu@iroctech.com

Mustafa Altun
Dept. of Electronics and Communication Engineering

Istanbul Technical University, Turkey
altunmus@itu.edu.tr

Lorena Anghel
TIMA laboratory

Grenoble-Alpes University, France
lorena.anghel@imag.fr

Anna Bernasconi
Dipartimento di Informatica

Università di Pisa, Italy
anna.bernasconi@unipi.it

Valentina Ciriani Luca Frontini
Dipartimento di Informatica

Università degli Studi di Milano, Italy
{valentina.ciriani, luca.frontini}@unimi.it

Mehdi Tahoori
Karlsruhe Institute of Technology

Karlsruhe, Germany
tahoori@ira.uka.de

Abstract—Beyond CMOS, new technologies are emerging to
extend electronic systems with features unavailable to silicon-
based devices. Emerging technologies provide new logic and
interconnection structures for computation, storage and commu-
nication that may require new design paradigms, and therefore
trigger the development of a new generation of design automation
tools. In the last decade, several emerging technologies have
been proposed and the time has come for studying new ad-
hoc techniques and tools for logic synthesis, physical design
and testing. The main goal of this project is developing a
complete synthesis and optimization methodology for switching
nano-crossbar arrays that leads to the design and construction
of an emerging nanocomputer. New models for diode, FET,
and four-terminal switch based nanoarrays are developed. The
proposed methodology implements both arithmetic and memory
elements, necessitated by achieving a computer, by considering
performance parameters such as area, delay, power dissipation,
and reliability. With combination of arithmetic and memory
elements a synchronous state machine (SSM), representation of a
computer, is realized. The proposed methodology targets variety
of emerging technologies including nanowire/nanotube crossbar
arrays, magnetic switch-based structures, and crossbar memories.
The results of this project will be a foundation of nano-crossbar
based circuit design techniques and greatly contribute to the con-
struction of emerging computers beyond CMOS. The topic of this
project can be considered under the research area of “Emerging
Computing Models” or “Computational Nanoelectronics”, more
specifically the design, modeling, and simulation of new nanoscale
switches beyond CMOS.

I. INTRODUCTION

CMOS transistor dimensions have been shrinking for
decades in an almost regular manner. Nowadays this trend
has reached a critical point and it is widely accepted that
the trend will end in a decade [1]. Even Gordon Moore, who
made the most influential prediction in 1965 about CMOS size
shrinking (Moore Law), accepted that his prediction will lose
it validity in near future [15]. At this point, research is shifting
to novel forms of nanotechnologies including molecular-scale
selfassembled systems [5], [27]. Unlike conventional CMOS
that can be patterned in complex ways with lithography,
self-assembled nanoscale systems generally consist of regu-
lar structures. Logical functions and memory elements are
achieved with arrays of crossbar-type switches. This project

targets this type of switching crossbars by using models based
on diodes, FETs, and four-terminal switches [20], [6], [4], as
illustrated in Figure 1. In particular, Figure 2 shows three
implementations of a specific Boolean function with these
models. Among these models a model based on four-terminal
switches deserves a special mention.

A four-terminal switch is specifically developed for cross-
points of nanoarrays; note that each crosspoint has four neig-
bour crosspoints. The four terminals of the switch are all
either mutually connected (ON) or disconnected (OFF). If
a controlling literal takes the value of 1, the switch is ON;
otherwise, it is OFF. On the other hand, diode and FET are
conventional two-terminal switch based devices, i.e., their two
terminals are either connected (ON) or disconnected (OFF).

In this paper we describe the Marie Skłodowska-Curie
grant agreement No 691178 (European Union’s Horizon 2020
research and innovation programme). Section II provides a
general overview of the project. The following sections sum-
marize the obtained results and the main objectives identified in
the first part of the project. In particular, Section III investigates
logic synthesis techniques for diode, FET, and four-terminal
switch based nanoarrays by comparing array sizes needed
to implement given Boolean functions. Section IV shows
a new decomposition method for the four-terminal switch
based model. Section V briefly discusses reconfiguration and
redundancy approaches needed to face temporal and spatial
variations of component electrical properties and hard faults.
Section VI discusses the development of defect, variation and
fault tolerant techniques in the presence of high defect densities
and extreme parametric variations, particularly for crossbar
array nano-architectures. Section VII concludes the paper.

II. OVERVIEW OF THE PROJECT

A. Research Objectives

The main objective of this project is developing a complete
synthesis methodology for nanoscale switching crossbars that
leads to the design and construction of an emerging computer.
To achieve this objective, we follow a roadmap, illustrated in 3,
with sub-objectives listed below.

Diode type FET type Four-terminal type

Fig. 1. Different models of switching crossbars.

Fig. 2. Representation of a Boolean function with Diode, FET and
4-terminal models.

1) Finding optimal crossbar sizes, modeling, and op-
timization: Fundamentally, all building parts of a
computer, namely arithmetic and memory elements,
use Boolean functions for their operations. Therefore,
implementing Boolean functions with optimal sizes
significantly advances us toward achieving our main
goal. Along with sizes, the main performance param-
eters power consumption, delay, and reliability values
of crossbars will be achieved by developing related
models. Performance optimization will be performed.

2) Implementing arithmetic and memory elements by
considering reliability, area, delay, and power dis-
sipation of the crossbars: We implement arithmetic
elements such as adders and multipliers, and memory
elements such as flip-flops and registers as building
blocks a computer. We also perform optimization for
circuit performance parameters using the specifics of
applicable technologies.

3) Realizing a nano-crossbar based synchronous state
machine (SSM): By integrating arithmetic and logic
elements as well as using technology parameters (e.g.,
area, delay, power and reliability) we realize a SSM
as a representation of a computer that uses a complete
logic flow and clocked control over state registration.

B. State of the Art and Contributions

Researchers have been interested in models of regular
arrays since the seminal paper of Akers in 1971 [3]. In
recent years, this interest sees a dramatic spike with the
rise of emerging technologies based on regular arrays of
switches [29]. Such technologies have apparent advantages
over conventional CMOS technologies, such as high density
(small area and delay) and easy manufacturability due to self-
assembly [27]. Our models target these emerging technolo-
gies including nanowire/nanotube crossbar arrays, magnetic

switch-based structures, and crossbar memories [12], [14],
[18], [19]. In this project, we will comprehensively investigate
and experimentally analyze these technologies with a final
aim of implementing arithmetic and memory elements with
technology parameters. Using diode, FET, and four-terminal
switch based models we aim to achieve a synchronous state
machine at the end of this project that would be the first in the
literature. As follows, we list the future contributions of this
project against the state of the art.

1) Models for switching nano-crossbars: Previous mod-
els in the literature fundamentally rely on con-
ventional approaches that were specifically devel-
oped for basic logic operations [13], [28]. In this
study, we generalize them to be applicable for any
given Boolean function with offering performance
formulations. Along with diode and transistor based
nanocrossbar models that have been extensively stud-
ies in the literature, a new model based on four-
terminal switches that is wide open to new research
ideas, will be considered.

2) Performance optimization: Unlike previous crossbar
based circuit implementations, our method does not
only consider area and reliability but it also deals
with other circuit performance parameters, namely
delay and power dissipation that results in a complete
justification.

3) Circuit implementation with switching nano-
crossbars: Previous studies have implemented
arithmetic circuit elements performing simple
operations [22], [24], [25]. They lack of synthesizing
arithmetic and memory elements required to
implement a SSM. This is considered in this project.

C. Research Methodology and Approach

The proposed research methodology involves all aspects
of computer-aided circuit and system design that constitutes
the “computational part” of the project. The methodology also
involves electrical and physical characteristics of the applicable
emerging technologies that constitutes the “technological part”
of the project. This project is interdisciplinary in nature.
There will be a continuous information flow between its
technological and computational parts. European beneficiary
organizations’ expertise is mostly on computational part and
collaborations will be made for the technological part. Compu-
tational part of this project is multidisciplinary among the fields
of logic synthesis and optimization, mathematical graph theory,
mathematical probability theory, CAD of emerging circuits
and systems. Innovation activities for each objective including
limitations:

1) Finding optimal crossbar sizes, modeling, and op-
timization: We try a systematic approach to find
optimal sizes and performance optimization. The ap-
proach exploits graph theory and circuit complexity
techniques, since it is likely an NP complete problem
and might be intractable. In fact, such problems are
related to fundamental questions in computer science,
such as the separation of the P and NP complexity
classes [17]. As a contingency plan we identify the
problem as a Boolean satisfiability problem and try
heuristic approaches.

Fig. 3. Project overview.

2) Implementing arithmetic and memory elements: Our
methodology considers all circuit performance pa-
rameters including reliability, area, delay, and power
dissipation. This allows us to compare our results
with those of CMOS circuits in a realistic and com-
prehensive manner. The trade-offs between parame-
ters are first investigated. Then the specifics of ap-
plicable technologies for the performance parameters
are determined. Finally, a comprehensive optimiza-
tion software package for the concurrent physical and
logical design of applicable technologies is revealed

3) Realizing a synchronous state machine (SSM): We
implement a SSM with a programmable multi-array
(tile) architecture such that each cross-point in ar-
rays corresponds to a programmable four-terminal
switch. We do not use any individual transistors
and switches that causes interconnection problems
and significantly worsens the density. Another poten-
tial problem is signal quality degradation that could
upper-bound the number of separate arrays/crossbars
in the architecture. Conventionally, this problem is
solved by adding simple restoration circuits at the
outputs of each circuit block (in our case a crossbar).
Unfortunately, this solution would be quite costly for
nano-crossbars since they are compact and hard-to-
manipulate structures. Therefore, as a contingency
plan, we design a single clocked programmable array
that synchronously restores the signals.

D. Originality and Innovative Aspects of the Research

This project has a degree of novelty since it establishes a
novel methodology for synthesis of switching nanoarrays. It is
not a modified version of the methods originally developed for
CMOS based circuits. The proposed methodology is developed
by solely considering the specifics of nano-crossbar arrays
with a comprehensive investigation on applicable technologies.
This project has a risky and foundational character since it
has an ambitious goal of implementing a high performance
synchronous machine that could implement the control part
of a nanocomputer that aims to be the basis of emerging
nanoscale technologies based on crossbar arrays of switches.
This project also has synergistic interdisciplinary approach
since its computational and technological parts necessarily in-
terfere to each other. Additionally, the project aims to innovate

Type Array Size Formulas (Optimal)

Diode (number of products in f) x (“number of literals in f ” + 1)

FET (number of literals in f) x (“number of products in f ” +

“number of products in f D”)

Fig. 4. Array size formulas for diode and FET based implementations.

Type Array Size Formula (Non-optimal)

Four-

terminal
(number of products in f) x (number of

products in f D)

Fig. 5. Array size formula for four-terminal switch based implemen-
tation.

in the specific theoretical areas of circuit complexity, matching
algorithms, and circuit performance optimization.

III. LOGIC SYNTHESIS TECHNIQUES FOR DIODE, FET,
AND FOUR-TERMINAL SWITCH BASED NANOARRAYS

In this section, we survey logic synthesis techniques for
diode, FET, and four-terminal switch based nanoarrays [21],
[26]. We present experimental results on standard benchmark
circuits to compare array sizes needed to implement given
Boolean functions. For diode and FET based nanoarrays,
Boolean functions are implemented by using conventional
techniques that are diode-resistor logic and CMOS logic [21].
This has an important constraint regarding nanoarray struc-
tures. Boolean functions should be implemented in their sum-
of-products (SOP) forms; other forms such as factored or BDD
(Binary Decision Diagram) cannot be used since these forms
require manipulation/wiring of switches that is not applicable
for self-assembled nanoarrays.

Array sizes for diode and FET based nanoarrays: Given
a target Boolean function f , we derive formulas of the array
sizes. This is shown in Figure 4. For diode based implemen-
tations, each product of f requires a row (horizontal line),
and each literal of f requires a column (vertical line) in an
array. Additionally, one extra column is needed to obtain the
output. For FET based implementations, each product of f
and its dual, fD, requires a column, and each literal of f
requires a row in an array. As an example, consider a target
function f = x1x2 + x1x2 having 4 literals and 2 products;
fD = x1x2+x1 x2 has 2 products. This results in array sizes
of 2× 5 and 4× 4 for diode and FET based implementations,

respectively. Note that both formulas, for diode and FET,
always result in optimal array sizes; no further reduction is
possible.

Four-terminal switch based implementation considers each
crosspoint of an array as a four-terminal switch [4]. Four
terminals of the switch are all either mutually connected
(ON-logic 1 applied) or disconnected (OFF-logic 0 applied).
Boolean functions are implemented with top-to-bottom paths
in an array by taking the sum (OR) of the product (AND)
of literals along each path. This makes Boolean functions
implemented in their sum-of-products (SOP) forms.

Array size for four-terminal switch based nanoarrays:
Given a target Boolean function f , the array size formula can
be derived by considering that each product of f and its dual,
fD, require an array column and an array row, respectively.
This is shown in Figure 5. As an example, consider a target
function f = x1x2 + x1x2 and fD = x1x2 + x1 x2 both
having 2 products. This results in an array size of 2× 2.

Examining the array size formulas in Figure 4 and Fig-
ure 5, we see that while the formulas in Figure 4 always
result in optimal sizes, the sizes derived from the formula
in Figure 5, that is, for four-terminal switch based arrays,
are not necessarily optimal. In the following part we present
an algorithm that finds an optimal size implementation of
any given target Boolean function. Finding whether a certain
array with assigned literals to its switches implements a target
function is the main problem in finding optimal sizes. This
problem requires to check if each assignment of 0’s and
1’s to the switches, corresponding to a row of the target
function’s truth table, results in logic 1 (a top-to-bottom path
of 1’s exists). To check this we have to enumerate all top-to-
bottom paths; the size of this task grows exponentially with
the array size. This is a general statement that holds also for
our algorithm described below.

Our simple brute force algorithm finds optimal array sizes
to implement given target Boolean functions with arrays of
four-terminal switches in four steps:

1) Obtain irredundant sum-of-products (ISOP) expres-
sions of a given-target function fT and its dual fTD.
Determine the upper bound on the array size using
the formula in Figure 5. The implementable lower
bound (LB) values are taken from the lower bound
table proposed in [4].

2) List the array shapes (R×C) and sort them regarding
array sizes in ascending order. While ordering, first
take the array shape which has lower number of rows.
Suppose that there are total of N different shapes in
the list. For Step 3, start with n=1 (1≤n≤N).

3) Consider the following statement for the n th shape.
Statement: An array which has the shape in the n th
line of the list is implementable for fT .
If the statement is TRUE, then change UB to the
R×C (save the design); go to Step 4.
If the statement is FALSE, then increase the number
n by 1 (n=n+1).

4) Repeat Step 3 until finding UB that is the optimal
size.

Simulation results: In Figure 6, we report synthesis results
for standard benchmark circuits. We treat each output of a

benchmark circuit as a separate target function. The number
of products for each target function fT and its dual fTD are
obtained through sum-of-products minimization using the pro-
gram Espresso. The array size values for “Diode”, “CMOS”,
and “4-terminal” are calculated by using the formulas in
Figure 4 and Figure 5. The array size values for “Optimal
4-terminal” are obtained using the presented optimization
algorithm. Examining the numbers in Figure 6, we always
see the same sequence from the worst to the best result as
“CMOS”, “Diode”, “4-terminal”, and “Optimal 4-terminal”.
This proves that models based on four-terminal switches
overwhelm those based on two-terminal switches regarding
the array size. Further, the numbers obtained by our optimal
synthesis method compares very favorably to the numbers
obtained by previous methods.

IV. LATTICES AND DECOMPOSITION METHODS

In this section we will briefly present some preliminary
studies carried out for this project, that show how the cost
of implementing a four-terminal switching lattice could be
mitigated by exploiting Boolean function decomposition tech-
niques. The basic idea of this approach is to first decompose
a function into some subfunctions, according to a given func-
tional decomposition scheme, and then to implement the de-
composed blocks with separate lattices, or physically separated
regions in a single lattice. Since the decomposed blocks usually
correspond to functions depending on fewer variables and/or
with a smaller on-set, their synthesis should be more feasible
and should produce lattice implementations of smaller size. In
the framework of switching lattices synthesis, where the avail-
able minimization tools are not yet as developed and mature as
those available for CMOS technology, reducing the synthesis
of a target Boolean function to the synthesis of smaller
functions could represent a very beneficial approach [7], [11].
As a preliminary work for this project, we have focused on
the particular decomposition method that gives rise to the
bounded-level logic networks called P-circuits [8], [10], [11].
P-circuits are extended forms of Shannon cofactoring, where
the expansion is with respect to an orthogonal basis xi ⊕ p
(i.e., xi = p), and xi ⊕ p (i.e., xi 6= p), where p is a function
defined over all variables except for a critical variable xi (e.g.,
the variable with more switching activity or with higher delay
that should be projected away from the rest of the circuit).
They can be defined as follows:

P-circuit(f) = (xi ⊕ p) f= + (xi ⊕ p) f 6= + f I

where I is the intersection of the projections of f onto the two
sets xi = p and xi 6= p, and

1) (f |xi=p \ I) ⊆ f= ⊆ f |xi=p

2) (f |xi 6=p \ I) ⊆ f 6= ⊆ f |xi 6=p

3) ∅ ⊆ f I ⊆ I .

This definition can be easily generalized to incompletely spec-
ified Boolean functions. Thus, the synthesis idea of P-circuits
is to construct a network for f by appropriately choosing the
sets f=, f 6=, and f I as building blocks.

The same idea can be exploited in the switching lattice
framework: the subfunctions f=, f 6=, and f I depend on n−1
variables instead of n, they have a smaller on-set than f , and
their lattice synthesis should produce lattices of reduced area.

Benchmark CMOS Diode
4-

Terminal

Optimal 4-

Terminal
Benchmark CMOS Diode

4-

Terminal

Optimal 4-

Terminal

Alu 0 30 18 6 6 Dc1 2 72 36 16 12

Alu 1 30 18 6 6 Dc1 5 35 15 12 6

Alu 2 30 18 6 6 Dc1 6 36 18 9 6

Alu 3 30 18 6 6 Ex5 31 156 104 32 24

B12 0 80 32 24 12 Ex5 33 110 77 21 21

B12 1 120 70 35 16 Ex5 46 81 54 18 18

B12 3 30 20 8 8 Ex5 49 72 54 12 12

B12 4 42 28 8 8 Ex5 50 81 63 14 14

B12 6 132 77 35 18 Ex5 61 64 48 12 12

B12 7 110 66 24 18 Ex5 62 49 35 10 10

B12 8 90 70 14 14 Misex1 1 48 16 8 8

C17 0 36 18 9 6 Misex1 2 132 55 35 15

C17 1 30 20 8 8 Misex1 3 156 60 40 24

Clpl 0 64 32 16 12 Misex1 4 121 44 28 16

Clpl 1 36 18 9 9 Misex1 5 90 45 25 15

Clpl 2 16 8 4 4 Misex1 6 143 66 42 18

Clpl 3 144 72 36 18 Misex1 7 81 36 20 15

Clpl 4 100 50 25 15 Mp2d 4 345 75 90 24

Dc1 1 25 10 6 6 Newtag 108 72 32 18

Fig. 6. Array sizes of three different nano-crossbar based logic families [21].

Therefore, the overall lattice for f derived composing minimal
lattices for f=, f 6=, and f I , could be smaller than the one
derived for f without exploiting its P-circuits decomposition.
This expectation has been confirmed by a set of experimental
results, where the utility of the decomposition-based approach
has been evaluated applying the two synthesis methods pre-
sented in [4] and in [16]. These results demonstrate that lattice
synthesis benefits from this type of Boolean decomposition,
yielding smaller circuits with an affordable computation time
(even less in some cases). Indeed, in 30% of the analyzed
cases the synthesis of switching lattices based on the P-circuit
decomposition of the logic function allows to obtain a more
compact area in the final resulting lattice, with an average gain
of at least 20%.

Future work for the project includes assessing the impact of
more complex types of decompositions, both within the class
of P-circuits (with more expressive projection functions p) and
beyond. In particular, we are currently studying a decomposi-
tion scheme that can be applied to the lattice synthesis of a
special class of regular Boolean functions called D-reducible
functions. D-reducible functions [9] are functions whose points
are completely contained in an affine space strictly smaller than
the whole Boolean cube {0, 1}n. A D-reducible function f can
be written as f = χA · fA, where A is its unique associated
affine space, χA is the characteristic function of A, and fA is
the projection of f onto A. Notice that f and fA have the same
number of points, but these are now compacted in a smaller
space.

The D-reducibility of a function f can be exploited in
the lattice synthesis process: the idea is to independently
find lattice implementations for the projection fA and for the
characteristic function χA of A, and then to compose them in
order to construct the lattice for f . To further reduce the overall
lattice area, we could exploit the peculiar structure of the
function χA, that represents the minterms of an affine subspace
of {0, 1}n. To this aim, we are currently studying and testing
a method for implementing minimal lattice representations of

affine spaces.

V. DEFECT AND FAULT-TOLERANT TECHNIQUES

As it has been already proved, future complex devices
based on nanowire crossbars provide better density over
conventional CMOS devices due to the new methods for
growing and assembling. They are also a very good candidate
for future high density interconnects, combinational circuits
and storage parts. Some of the potential solutions are of a
regular types [23], others based on memristive networks are
on an irregular structures [2]. These technologies are highly
sensitive to design variations, defect and intermittent faults, or
susceptible to environmental factors, such as thermal stress,
radiation, and so on. It may result in crossbars structures
with high number of defect rates related to manufacturing or
environmental constraints, much more than what are consid-
ered today in conventional CMOS technologies (15% of faulty
components). These threats can be seen as major obstacles to
adopting and using such architectures and technologies to build
future application specific circuits or even processors.

State of the art conventional defect and fault-tolerant tech-
niques are not suitable for these designs because they are
targeting rather small defect rates. In this project we plan
to investigate the reconfiguration and redundancy approaches
needed to face temporal and spatial variations of component
electrical properties and also hard faults. Potential solutions
can be the combination of temporal and structural redundancy,
built-in repair circuitry, and system-level adaptation techniques
and adapt the techniques that have to be used to masks on the
fly faulty components and signals caused by defects and other
error sources.

Another part of of our studies during the duration of the
project will target the variation and hard failures impact on
nanowire networks, where we’ll pick random m wires and
disconnect them from the network and assess the parameters
to be optimized in order to guarantee fault-free functionality.

text

Reconfiguration
Generator

BISM

(Map)

BIST

(Test)

BISD

(Diagnosis)

BISR

(Repair)

Defect Tolerant

Design Flow

Fault Tolerance

Defect Tolerance

Fig. 7. Variation, defect and fault tolerance in crossbar nano-
architectures.

VI. BUILT-IN VARIATION, DEFECT, AND FAULT
TOLERANCE

The key aim of this project is a set of fully integrated re-
search activities to provide defect, variation and fault tolerance
in the presence of high defect densities and extreme parametric
variations in nano-crossbar architectures. Self-assembly pro-
cesses promise to considerably lower manufacturing costs, but
at the expense of reduced control of the exact placement of
these devices. Without fine-grained control, these devices will
certainly exhibit higher defect rates. Moreover, nanofabrication
process yields nanowires which are a few atoms long in the
diameter. For instance, the contact area between nanowires
contains only a few tens of atoms. With such small cross-
section and contact areas, fragility of these devices is orders
of magnitude more than devices currently being fabricated
using conventional lithography techniques. Therefore, extreme
parametric variations and defects are assumed to be inevitable
and they are believed to be two major issues for nanowire
based structures. While it is impossible to eliminate all de-
fects during nanofabrication, the design paradigms should be
changed such that they can produce reliable systems in the
presence of hardware defects.

One of the main focuses of this project is development of
defect, variation and fault tolerant techniques in the presence of
high defect densities and extreme parametric variations, partic-
ularly for crossbar array nano-architectures. To tolerate high
defect rates and variations, our revolutionary approach is to
integrate defect tolerance to improve the manufacturing yield
(for fabrication defects), fault tolerance to ensure the lifetime
reliability (for errors during normal operation), and variation
tolerance to ensure the predictability and performance (for
parametric variations), in the design methodologies for fu-
ture nanotechnologies. Adaptive and built-in defect, variation
and fault tolerant design flows, fundamentally different from
conventional approaches, are proposed in which the objective
is to ensure high manufacturing yield and runtime reliability
of the circuit at extremely low costs. We plan to exploit the
opportunities created by this nanotechnology such as repro-
grammability and abundance of programmable resources to
provide defect, variation and fault tolerance. The overview of
this new methodology for crossbar nano-architectures is shown
in Fig. 7, which will be detailed in the following subsections.

A. Built-in Self-testing (BIST) and Self-diagnosis (BISD)

Thorough testing and precise high-resolution location of
failing resources in a defective part are keys to successful
implementations of defect and fault tolerance. Thorough man-
ufacturing testing is required to identify a defective manufac-
tured part. During system operation, periodic testing is required
to identify a defective system component with a permanent
fault. Application-dependent test and diagnosis techniques are
useful for defect tolerance and also for detection, location, and
repair of permanent faults during normal operation of a fault-
tolerant reconfigurable system. Application-independent test
and diagnosis techniques are used after manufacturing, mainly
for identifying defective parts and also for defect tolerance.
Test and diagnosis during system operation are very complex
tasks; however, they help detect permanent and transient faults
and hence improve the overall system reliability. Built-in-self-
testing (BIST) and Built-in-self-diagnostics (BISD) are key
components for effective self-repair with minimized depen-
dence on the external test equipment.

B. Built-in Self-mapping (BISM)

Since it is expected that all manufactured nano-chips con-
tain a considerable percentage of defects even in a mature
fabrication process, defect tolerance is inevitable. The goal of
defect tolerance is to bypass defective resources using test and
diagnosis information. Since defects are device specific, this
part of the design flow, mapping the application and bypassing
defective resources, has to be device specific as well. However,
the information required for such mapping, which is obtained
only after test and diagnosis, is not available at the design time.
Therefore, some parts of the application mapping phase have to
be postponed from design time to the test time. Nevertheless,
we propose a novel design flow to minimize such per-chip
customized design efforts in Sec. VI-C.

As parts of the design flow are shifted to the test time,
we proposed a built-in self-mapping (BISM) approach to
minimize per-chip customized mapping efforts. BISM allows
the crossbar array to be configured by the on-chip interface
circuitry and bypass defective resources. It also reduces physi-
cal design efforts in which detailed placement and routing will
be performed on-the-fly. In other words, only global placement
and routing has to be completed at the design time and detailed
configuration of individual crossbars (for logic mapping or
signal routing) will be determined at the configuration time
by BISM.

C. Application-Independent Defect Tolerant Flow

In the conventional defect tolerant flow, the existence and
the location of defective elements are identified using test and
diagnosis steps and stored in defect map. Defect tolerance
is achieved by avoiding defective resources in the physical
design flow using the defect map. Particularly, placement and
routing phases of the physical design use the defect map in
order to map the design to the crossbar array by using only
defect-free resources. However, due to prohibitively large size
of defect map and per chip customization of entire design
flow, this traditional approach cannot be used for high-volume
production of nano-chips.

Most drawbacks of the traditional flow are due to the
fact that this method is application dependent, i.e. defects are
handled in a per-application basis. In contrast to the defect-
aware design flow, we propose a defect-unaware design flow to
tolerate defects in crossbar arrays. In this flow, defect tolerance
is performed once and the same recovered (defect-free) set of
resources are used for all applications. In the proposed flow,
almost all design steps remain unaware of the existence and the
location of defects within the nano-chip. The key idea in the
proposed defect-unaware flow is to identify universal defect-
free subsets of resources within the original partially-defective
nano-chip. All design steps work with this universal defect-free
subset of the chip called the design view. The size of these
“universal” subsets is identical for all nano-chips fabricated
in the same process environment (similar defect densities).
Also, these universal defect-free subsets remain unchanged
for different applications mapped into the same nano-chip,
making this approach application-independent. There is a final
mapping phase, with very low complexity, at the end of
physical design flow that makes the connection between the
defect-free design view and the actual physical view of the
nano-chip which contains actual defects. This is the only
defect-aware step which has to be performed per chip. This
final mapping phase will be implemented as a part of the
proposed BISM approach.

For the case of crossbar nano-architectures, the idea of
universal defect-free subsets and the corresponding defect-
unaware flow can be explained as follows. The goal of this
approach is to identify defect-free k × k crossbars within
the original partially-defective n× n crossbars. These defect-
free subsets of the crossbars are complete, which means that
every k input nanowire in the defect-free subset is connectable
to every k output nanowire through a defect-free crosspoint.
In general, the defect-free subset is smaller than the original
crossbar (k < n). The size of this defect-free subset (k) has
to be chosen such that for the fabricated n × n crossbars,
the probability of finding such defect-free k × k crossbars,
i.e., manufacturing yield is high enough. In order words, the
concept of manufacturing yield is redefined to this probability:
if a fabricated n × n crossbar contains a defect-free k × k
crossbar, it is usable, otherwise it is considered as unusable.
During the physical design, the original design will be mapped
(placed and routed) into an array of k × k crossbars. A
final defect-aware mapping step is required to re-map the
used resources within k × k crossbars into the actual defect-
free resources within partially-defective n×n crossbars using
the defect map information. An important advantage of this
approach is the reduction in the size of the defect map from
O(n2) to O(n), since instead of storing the actual defect
information of individual crosspoints, only the information
regarding the location of defect-free k × k crossbar within
the n× n crossbar needs to be stored.

VII. CONCLUSION

Integrating a new technology into a mature industry such
as the semiconductor industry is a long road in which device
performances and manufacturability have to be developed
jointly through a blend of advanced research, technology
development and industry-compliant implementation. One of
the major promises of emerging nanotechnologies for on-
chip applications is ultimate integration density, manufacturing

and integration cost reduction, and the reduction of power
consumption. However, there is a big gap in 1) extending the
existing electronic design automation (EDA) flow for emerging
technologies in order to introduce them in the architecture
and system design in a systematic-way, and 2) novel com-
puter architecture systems based on emerging technologies to
provide high performance and minimize power consumption
at the same time. This project includes the introduction of
hybrid EDA flow as well as emerging computer architectures
by gathering well respected experts working in these broad
fields.

VIII. ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Skłodowska-Curie grant agreement No 691178.

REFERENCES

[1] “Overall Technology Roadmap Characteristics,” International Technol-
ogy Roadmap for Semiconductors, Tech. Rep., 2010, retrieved 2013.

[2] H. O. S. C. M.-O. M. A. A. Z. Stieg, A. V. Avizienis and J. K.
Gimzewski, “Emergent criticality in complex Turing B-type atomic
switch networks,” Advanced Materials, vol. 24, no. 2, pp. 286 – 293,
2012.

[3] S. B. Akers, “A Rectangular Logic Array,” in Switching and Automata
Theory, 1971., 12th Annual Symposium on, 1971, pp. 79–90.

[4] M. Altun and M. D. Riedel, “Logic Synthesis for Switching Lattices,”
IEEE Transactions on Computers, vol. 61, no. 11, pp. 1588–1600, 2012.

[5] K. Ariga, M. V. Lee, T. Mori, X.-Y. Yu, and J. P. Hill, “Two-dimensional
nanoarchitectonics based on self-assembly,” Advances in Colloid and
Interface Science, vol. 154, no. 1-2, pp. 20 – 29, 2010.

[6] P. Avouris, “Molecular Electronics with Carbon Nanotubes,” Acc. Chem.
Res., vol. 35, no. 12, pp. 1026–1034, 2002.

[7] A. Bernasconi, V. Ciriani, R. Drechsler, and T. Villa, “Logic Mini-
mization and Testability of 2-SPP Networks,” IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 27, no. 7, pp. 1190–1202, 2008.

[8] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa, “On Decomposing
Boolean Functions via Extended Cofactoring,” in Design Automation
and Test in Europe (DATE), 2009.

[9] A. Bernasconi and V. Ciriani, “Dimension-reducible boolean functions
based on affine spaces,” ACM Trans. Design Autom. Electr. Syst.,
vol. 16, no. 2, p. 13, 2011.

[10] A. Bernasconi, V. Ciriani, V. Liberali, G. Trucco, and T. Villa, “Synthe-
sis of P-Circuits for Logic Restructuring,” Integration, vol. 45, no. 3,
pp. 282–293, 2012.

[11] A. Bernasconi, V. Ciriani, G. Trucco, and T. Villa, “Using flexibility
in p-circuits by boolean relations,” IEEE Trans. Computers, vol. 64,
no. 12, pp. 3605–3618, 2015.

[12] Y. C. Chen, S. Eachempati, C. Y. Wang, S. Datta, Y. Xie, and
V. Narayanan, “Automated Mapping for Reconfigurable Single-electron
Transistor Arrays,” in Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE, 2011, pp. 878–883.

[13] Z. Chen, J. Appenzeller, Y.-M. Lin, J. Sippel-Oakley, A. G. Rinzler,
J. Tang, S. J. Wind, P. M. Solomon, and P. Avouris, “An Integrated
Logic Circuit Assembled on a Single Carbon Nanotube,” Science, vol.
311, no. 5768, pp. 1735–1735, 2006.

[14] A. Dehon, “Nanowire-based Programmable Architectures,” J. Emerg.
Technol. Comput. Syst., vol. 1, no. 2, pp. 109–162, 2005.

[15] M. Dubash, “Mooreâs Law is Dead, Says Gordon Moore,” Techworld.
com, no. 13, 2005.

[16] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing Optimal
Switching Lattices,” ACM Trans. Design Autom. Electr. Syst., vol. 20,
no. 1, pp. 6:1–6:14, 2014.

[17] S. Jukna, Boolean Function Complexity: Advances and Frontiers,
Springer, Ed., 2012.

[18] A. Khitun, M. Bao, and K. L. Wang, “Spin Wave Magnetic NanoFabric:
A New Approach to Spin-Based Logic Circuitry,” IEEE Transactions
on Magnetics, vol. 44, no. 9, pp. 2141–2152, 2008.

[19] Y. Levy, J. Bruck, Y. Cassuto, E. G. Friedman, A. Kolodny, E. Yaakobi,
and S. Kvatinsky, “Logic Operations in Memory Using a Memristive
Akers Aarray,” Microelectronics Journal, vol. 45, no. 11, pp. 1429 –
1437, 2014.

[20] W. Lu and C. Lieber, “Nanoelectronics from the Bottom Up,” Nat
Mater, vol. 6, no. 11, pp. 841–850, 2007.

[21] M. C. Morgul and M. Altun, “Synthesis and optimization of switching
nanoarrays,” in Design and Diagnostics of Electronic Circuits and
Systems (DDECS), 2015 IEEE International Symposium on. IEEE,
2015, pp. 161–164.

[22] A. H. Shaltoot and A. H. Madian, “Memristor Based Carry Lookahead
Adder Architectures,” in Circuits and Systems (MWSCAS), 2012 IEEE
55th International Midwest Symposium on, 2012, pp. 298–301.

[23] G. Snider, “Computing with hysteretic resistor crossbars,” Appl. Phys.
A, vol. 80, pp. 1165 – 1172, 2005.

[24] G. Snider, P. Kuekes, and R. S. Williams, “CMOS-like Logic in
Defective, Nanoscale Crossbars,” Nanotechnology, vol. 15, no. 8, p.
881, 2004.

[25] G. S. Snider, P. J. Kuekes, and D. R. Stewart, “Nanoscale Latch-array
Processing Engines,” Patent US 7,227,379, 06 5, 2007.

[26] O. Tunali and M. Altun, “Defect tolerance in diode, fet, and four-
terminal switch based nano-crossbar arrays,” in Nanoscale Architectures
(NANOARCH), 2015 IEEE/ACM International Symposium on. IEEE,
2015, pp. 82–87.

[27] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,”
Science, vol. 295, no. 5564, pp. 2418–2421, 2002.

[28] H. Yan, H. S. Choe, S. Nam, Y. Hu, S. Das, J. F. Klemic, J. C.
Ellenbogen, and C. M. Lieber, “Programmable Nanowire Circuits for
Nanoprocessors,” Nature, vol. 470, no. 7333, pp. 240–244, 2011.

[29] A. Y. Zomaya, Handbook of Nature-Inspired and Innovative Computing,
Springer, Ed., 2006.

