
Integrated Synthesis Methodology for Crossbar Arrays∗

1st M. Ceylan Morgul
3rd Onur Tunali

10th Mustafa Altun
Istanbul Technical University

Istanbul, Turkey
{morgul, onur.tunali, altunmus}@itu.edu.tr

2nd Luca Frontini
5th Valentina Ciriani

Università degli Studi di Milano
Milan, Italy

{luca.frontini, valentina.ciriani}@unimi.it

4th E. Ioana Vatajelu
6th Lorena Anghel
TIMA laboratory

Grenoble-Alpes University
Grenoble, France

{ioana.vatajelu, lorena.anghel}@imag.fr

7th Csaba Andras Moritz
University of Massachusetts, Amherst

Massachusetts, USA
andras@ecs.umass.edu

8th Mircea R. Stan
University of Virginia

Charlottesville, Virginia, USA
mircea@virginia.edu

9th Dan Alexandrescu
IROC Technologies
Grenoble, France

dan.alexandrescu@iroctech.com

ABSTRACT
Nano-crossbar arrays have emerged as area and power efficient
structures with an aim of achieving high performance computing
beyond the limits of current CMOS. Due to the stochastic nature
of nano-fabrication, nano arrays show different properties both
in structural and physical device levels compared to conventional
technologies. Mentioned factors introduce random characteristics
that need to be carefully considered by synthesis process. For in-
stance, a competent synthesis methodology must consider basic
technology preference for switching elements, defect or fault rates
of the given nano switching array and the variation values as well
as their effects on performance metrics including power, delay, and
area. Presented synthesis methodology in this study comprehen-
sively covers the all specified factors and provides optimization
algorithms for each step of the process.

CCS CONCEPTS
•Hardware→ Emerging architectures; Emerging tools and method-
ologies;

KEYWORDS
Crossbar Arrays, Logic Synthesis, Defect Tolerance, Fault Tolerance,
Performance Optimization, Memristor Arrays

1 INTRODUCTION
Nano-crossbars are emerged to be an alternative technology besides
CMOS [25]. They are fabricated with relatively cheap bottom-up
nano-fabrication techniques rather than using purely lithography
based conventional production. Due to the novel manufacturing
∗This work is part of a project that has received funding from the European Union’s
H2020 research and innovation programme under the Marie Sklodowska-Curie grant
agreement #691178, as well as supported by the TUBITAK-Career project #113E760.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
NANOARCH’18, 18-19 July 2018, Athens, Greece
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

techniques, fabrics yield to be in regular and dense form [7]. Because
of their structure and technology, they are area and power efficient
[1].

Currently, computing is achieved with crosspoints behaving like
switches, either as two-terminal or four-terminal. This is illustrated
in Figure 1. Depending on the used technology, a two-terminal
switch behaves either as a diode [11], a resistive/memristive switch
[18], or a field effect transistor (FET) [19]. Diode and resistive
switches correspond to the crosspoint structure in Figure 1(a); here,
the switch is controlled by the voltage difference between the ter-
minals. Figure 1(b) shows a FET based switch; here, the red line
represents the controlling input. This is a unique opportunity that
allows us to integrate well developed conventional circuit design
techniques into nano-crossbar arrays. Finally, a novel four-terminal
switch is given in Figure 1(c). The controlling input, not shown in
the figure, has a separate physical formation from the crossbar that
is thoroughly explained for different technologies in [2].

To illustrate their computing approaches, we show examples
for the implementation of fXOR2 = x1x2 + x1x2 in Figure 2. Logic
synthesis models for diode and memristor based crossbars are very
much PLA-like as can be seen in Figure 2(a) and 2(b). Memristor
based crossbars have one major difference that logic computation is
made through several states/loops (for further information, check
[24]). For FET based crossbars, each product of the function or
function’s dual is realized by a separate column, as seen in Figure
2(c). Each inputs is assigned to a row to control the FETs on the
corresponding row. Another type is a four-terminal based crossbar;
here every crosspoint performs switching on all four directions.
Crosspoints’ control lines are not shown in Figure 2(d), yet detailed
explanation of control lines can be found in [2].

Regarding emerging technologies and nano-fabrication, fault
rates are much higher for nano-crossbars, as expected, compared
to those of conventional CMOS circuits [8]. Therefore, during logic
synthesis, consideration of faults and defects is mandatory. This ap-
plies for the integration of both diode, FET based or novel 4-terminal
based logic synthesis methodologies. For this reason, researchers
focus on challenges including defect and variance tolerances [21]
[10]. Defect and variance tolerant approaches are closely related to
logic realization and performance optimization, respectively.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

NANOARCH’18, 18-19 July 2018, Athens, Greece M. C. Morgul et al.

Nano-crossbar Array

Crosspoint

a)

b)

c)

Figure 1: Switching models of a nano-crossbar array: cross-
point as a) two-terminal switch with terminals in the
crossed lines, b) two-terminal switch with terminals in the
same line, and c) four-terminal switch.

R1

A

B

f

x1
R3

f

R2

R1

x2 x2x1

a)

f

x1

x2

x2

PFET part NFET part

c)

x1

b)

x1

x2

x2

x1

f
R

d)

Figure 2: Implementation of fXOR2 with different nano-
crossbar types: crosspoint as a) diode, b) memristor, c) FET,
and d) four-terminal switch.

Taking mentioned issues into account, we have developed a
complete integration methodology for logic synthesis, defect toler-
ance and performance optimization with variance tolerance. This
methodology is designed as a step-by-step guide to combine mod-
ular research approaches into an entire production pipeline. The
overview of proposed integrated methodology is explained in Sec-
tion 2. Following sections, we have demonstrated and reviewed
the current methods with the exception of Section 4.2. Since four-
terminal design parts from the rest in terms of defect tolerance, we
present a preliminary and novel approach for defect tolerance of
four-terminal crossbars which is anticipated as an initial step in
further research.

Determining Technology

Crosspoint as

Memristor/Diode FET 4-Terminal

Nano-crossbar Array

Integrated Synthesis Methodology

F
a
b

ri
c
a
ti

o
n

P
o

s
t

F
a
b

ri
c
a
ti

o
n

C
o

n
fi

g
u

ra
ti

o
n

Determining

functionality

Defect Tolerance

Size
Redundant

Hardware

A
re

a
 E

ff
ic

ie
n

c
y

(G
e
n

e
ra

ll
y

 1
.5

 t
im

e
s
 l

a
rg

e
r

s
iz

e
 u

s
e
d

)

Defect-aware Defect-unaware

Variance Tolerance

Delay Power

T
ra

n
s
ie

n
t

F
a
u

lt
s
 i

n
-f

ie
ld

Testing Transient Fault Tolerance Performance

Multiple Output

Functions

Defect map

L
o

g
ic

 S
y

n
th

e
s
is

P
e
rm

a
n

e
n

t
D

e
fe

c
t

T
o

le
ra

n
c
e

P
e
rfo

rm
a
n

c
e

O
p

tim
iz

a
tio

n
T

ra
n

s
ie

n
t

F
a
u

lt

T
o

le
ra

n
c
e

Single Output

Functions

Defect-aware

Figure 3: Integrated synthesis methodology scheme for
nano-crossbar arrays.

2 PROPOSED INTEGRATION
METHODOLOGY

As briefly explained in the previous section, nano-fabrication deliv-
ers switching nano-crossbar arrays with structures or individual
components having varied properties. Mentioned factors introduce
random characteristics of which need to be carefully considered
by synthesis process. For instance, a competent synthesis method-
ology must consider basic technology preference for switching
elements, defect or fault rate of the given nano-crossbar and the
variation values. Presented synthesis methodology in this study
comprehensively covers the all specified factors and provides op-
timization algorithms for each step of the process. A schematic
summary demonstrating every step of the method with annotation
showing the certain research tasks is given in Figure 3.

Integrated Synthesis Methodology for Crossbar Arrays NANOARCH’18, 18-19 July 2018, Athens, Greece

First step of the synthesis process of a nano-crossbar involves
the decision of switching technology which will be explained elab-
orately in Section 3. Main purpose is to determine which of the
diode/memristor, FET, or four-terminal based components are to be
used. This step is one of the most important procedures determin-
ing the size of the nano-crossbar. Production with diode/memristor
based technologies as well as with FET are explained and then logic
synthesis design with four-terminal based switches is given.

Second step of the synthesis process of a nano-crossbar covers
the permanent faults (defects forming in the course of fabrication)
and the tolerance aspects, which will be described in Section 4. Main
purpose is to obtain a valid realization of a given logic function
using two distinct approaches titled as defect-aware and defect-
unaware. First method employs faults existing in nano-crossbar
during the realization of logic function hence the name aware.
Second method avoids the faults by attempting to find a fault-free
region of nano-crossbar at the beginning so realization of given
logic function is straightforward at the end.

Third step of the synthesis process of a nano-crossbar covers
the variation minimization, which will be explained in Section 5.
Main purpose is to minimize the overall delay by considering the
individual variation values of components used in logic synthesis.
Heuristic algorithms in the literature produce results very close to
theoretical lower bound.

Delay minimization stage of the fourth step can be modified to
include power optimization and fault tolerance as well. An objective
function added to the variation tolerant algorithms guides the pro-
cess to minimize both delay and power values of a nano-crossbar.
Nevertheless, since this is a multi-level optimization, performance
of the algorithm diminishes to an extent. In order to execute a
parametric optimization, trade-offs must be decided considering
technology dependent features and other conditions for the ob-
jective function. Furthermore, fault tolerance mechanism can be
appended to the delay minimization process. It is possible to avoid
faulty elements by assigning infinite variation values to them. Since
the heuristic is based on minimizing the variation values of the
nano-crossbar, fault avoidance is inherently established.

Final step of the synthesis process of a nano-crossbar involves
the analysis of transient faults. Main purpose is to determine the
effect of transient faults to the operational capacity of nano-crossbar
and calculate fault tolerance performance.

3 LOGIC SYNTHESIS
At the beginning of logic synthesis process, crossbar technology
must be determined based on certain fundamental criteria:
• Crossbar size limits (area) and Function size
• Fabrication Complexity
• Function output number (Multi or single output realization)
• Power and Delay Specifications
• Application specification (memory based etc.)

Decision should be made on the importance of the listed items;
this could change depending on the application. For example, if an
application has also memory unit, then it will be smart to choose
memristor technology for logic unit. Since memristor could be used
on memory unit as well, then they can interact more smoothly and
the same fabrication technique could be used for both.

On the other hand, realization of a function with diode or mem-
ristor based crossbar requires less area than FET based option. How-
ever FET has better power performance over other technologies. In
addition to all, four-terminal based crossbar performs better results
on most of the function in terms of area [13].

In this section, we survey logic synthesis step of the integration
methodology by considering only area size of the crossbar arrays.
Array size formulations, which are given below, could be a guideline
to this.

Array size formulations for single output function f (where f ’s
dual is f D):

• for Diode:(number o f products in f) + 1) ×
((number o f literals in f) + 1)
• forMemristor: ((number o f products in f) + 2) ×
((number o f literals in f) + 2)
• for FET: (number o f literals in f) ×
((number o f products in f) + (number o f products in f D))
• for 4-terminal: (number o f products in f D) ×
(number o f products in f)

For the single and multi output function realization, synthesis
methodology for FET crossbar does not allow us to produce multi-
level logic synthesis, only two-level approach can be used [20].
However, multi-level logic synthesis approach is applicable for
diode and memristive crossbars [23]. Therefore, area optimization
still demands further research for FET systems. Furthermore, as
mentioned in Section 1, logic synthesis on diode and memristive
crossbars is similar to PLA like synthesis. So the same approaches
(which for the PLA) are applicable such as product sharing, phase
changing etc.

Logic synthesis on four-terminal crossbars (lattices) is relatively
a new method and technology. As shown in [2], Altun presented
a useful logic synthesis technique for four-terminal crossbars (lat-
tices). Yet mentioned method does not warrant the fact that pro-
duced lattice has optimal solution in terms of area. Therefore, new
specific logic synthesis methodologies are needed to be presented.
As shown in [9] and [13], optimal synthesis methodologies are
provided. In addition, there are decomposition based techniques
such as XOR based [12] [6], p-circuit [4] and dimension reducibility
[5] decompositions as well.

4 DEFECT/FAULT TOLERANCE
In this section, we will investigate defects or faults with catego-
rizing them as permanent (naming defects) and transient (naming
faults). As mentioned in Section 1, crossbars tend to be fabricated
with defects. Also, particular transient faults can occur in the field.
Defect tolerance basically means finding defect-free region or cross-
point which can still be employed during logic synthesizing. On the
other hand, faults can only be tolerated by redundancy, since they
happens transiently. Yet sensitivity analysis can be made for both
types. Defect model can be found in Figure 4 demonstrating stuck-
at-0 (open) and stuck-at-1 (close). Their features can be summarized
as:

• Permanent Faults occur mostly in fabrication and are toler-
ated in post-fabrication by redundancy and reconfigurability
(mapping).

NANOARCH’18, 18-19 July 2018, Athens, Greece M. C. Morgul et al.

Nano-Crossbar Array

: Stuck-at-zero switch

: Stuck-at-one switch

: Configurable switch

Input Lines

O
u
tp

u
t

L
in

e
s

Figure 4: Nano-crossbar array with faulty/defective cross-
points.

• Transient Faults occur in field and are tolerated in field by
only redundancy

4.1 Defect Tolerance for Diode, Memristor and
FET

Defect tolerance is achieved by realizing a target logic functions
on a defective crossbar using row and column permutations. This
problem is considered as NP-complete [17]. For the worst-case,
N !M! permutations are required to find a successful mapping for
N ×M crossbar. Algorithms in the literature use defect-unaware or
defect-aware approach.

Defect-unaware algorithms aim to find the largest possible k ×k
defect-free sub-crossbar from a defective N × N crossbar where
k ≤ N [27]. The algorithms are inefficient for high fault rates -
obtained k values are much smaller than N [27]. In this regard,
defect-aware algorithms perform much more satisfactorily [21]. We
have performed detailed analysis of algorithms in [22].

Defect-aware considers the defect characteristics (stuck-at-0 or
stuck-at-1), then decide which switch to employ during the map-
ping. In our previous work [21], we have proposed an efficient
heuristic algorithms which aims to match defected crossbar and
the function solution crossbar. For this, it defines crossbars as ma-
trix. Therefore it can perform sorting, matching and backtracking
steps efficiently. It makes repetition for a limit of permutation. This
controls heuristic feature of the algorithm.

4.2 Defect Tolerance for Four-terminal
Four-terminal defect tolerance demands a different approach than
the methods we have covered so far. For this reason, we present a
novel method, which is firstly introduced in this paper. The Method
utilizes a prior sensitivity analysis of crossbar to specify critical
switches, and strengthens them with proposed mitigation factors.
The same naming conventions are applicable, regarding defects
which are categorized as stuck-at-0 (SA0) and stuck-at-1 (SA1). In
addition, we follow the same terminology adopted in [2] and [9]
by addressing crossbar as lattice and switch as cell to be consistent
and emphasize the distinction of four-terminal approach. Finally, it
should be noted that as opposed the previous sections, we provide
a more detailed explanation due to original technical contribution
presented in this section.

4.2.1 Defect Injection Methodology. We perform a defect injec-
tion with uniform distribution to lattice reaching defect densities up
to 10%. Every cell (a four-terminal switch) is presumed to have only
SA0 or SA1. Once the "defective" lattice is obtained, the algorithm

1 1 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 2 1
1 2 1 0 1

1 0 1 0 0
1 0 1 1 1
1 2 0 2 2
0 1 1 0 0
0 2 2 2 0

b) c)

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒
𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔
𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕
𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒
𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

a)
Figure 5: a) Lattice design for the example function f and its
sensitivity map for b) SAO and c) SA1.

generates all the possible 2n inputs (where n is the number of vari-
ables). For each input, the simulation algorithm compares the given
output with the correct one. Let E0i j (resp., E

1
i j), with 1 ≤ i ≤ r ,

1 ≤ j ≤ s , be the number of defective outputs with a SA0 (resp., SA1)
in the cell (i, j) of the given lattice. Note that 0 ≤ {E0i j , E

1
i j } ≤ 2n .

Moreover, when E0i j (resp., E
1
i j) is equal to 0 we have that, for any

possible input, the lattice output is never changed by the SAF in
the cell (i, j). In this case, we call the cell (i,j) robust w.r.t. SA0
(resp., SA1). Let R0 (resp., R1) be the total number of robust cells
w.r.t. SA0 (resp., SA1) in the lattice. Finally, let E0 =

∑i=r
i=1
∑j=s
j=1 E

0
i j

(resp., E1 =
∑i=r
i=1
∑j=s
j=1 E

1
i j) be the total number of defective output

with SA0 (resp. SA1) in the simulation. For an example of function
f = x4x5x7+x4x6x7+x4x5x6x7+x4x6x7+x4x6x7 realized in Figure
5(a) (with the method in [2]), in the Figure 5(b) (resp., 5(c) shows
the map containing E0i j (resp., E

1
i j) in each cell.

4.2.2 Metrics used for Sensitivity Analysis. In order to evaluate
the sensitivity of a lattice to SA0 and SA1 defects, we propose two
metrics. The first one measures the average number of defective
outputs considering sensitive cells to SA0 or SA1 only. The second
one measures the average number of defective outputs in the entire
lattice. Note that the total number of cells is the area of the lattice
(i.e., r × s), the number of non-robust cells for SA0 (resp., SA1) is
r × s − R0 (resp., r × s − R1), and 2n is the total number of inputs.
(1) Sensitivity of defective cells is the total number of inputs that
give an uncorrected output (E0 and E1) divided by the total number
of inputs (2n), for each non-robust cell (r × s − R0 or r × s − R1). In
the case of SA0 the metric can be expressed as: S0C = E0/(2n (r ×
s −R0)). The same reasoning can be done for SA1 defect sensitivity.
(2) Sensitivity of lattice is the total number of inputs that give an
uncorrected output divided by the total number of inputs for each
cell, in the case of SA0 is: S0L = E0/(2n (r × s)). The SA1 case is
analogous.

4.2.3 Benchmarks and Simulations. The defect simulations have
been run on a machine with two AMD Opteron 4274HE for a total
of 16 CPUs at 2.5 GHz and 128 GByte of main memory, running
Linux CentOS 7. The benchmarks functions are expressed in PLA
form and are taken from a subset of LGSynth93 [26]. A total of
about 580 functions were considered, and each output of a function
is implemented as a separate Boolean function.

The software used for simulations is written in C++. We used
ESPRESSO to implement the method described in [2], and a col-
lection of Python scripts for computing minimum-area lattices by
transformation to a series of SAT problems, to simulate the results
reported in [9]. Each SAT execution is stopped after ten minutes.

Integrated Synthesis Methodology for Crossbar Arrays NANOARCH’18, 18-19 July 2018, Athens, Greece

Table 1: A sample of benchmark functions synthesized
with [2] and [9] approaches and their sensitivity values

name r × s n E0 S0C S0L % R0
r×s E1 S1C S1L % R1

r×s
Synthesis with Dual Method [2]

add6(1) 6×6 4 19 0.06 0.03 47% 9 0.06 0.02 75%
alu2(2) 11×10 8 462 0.03 0.02 35% 121 0.02 0.01 80%
b11(1) 3×6 7 28 0.02 0.01 44% 73 0.03 0.03 6%
dc2(0) 4×6 7 117 0.05 0.04 17% 162 0.08 0.05 33%
exam(5) 6×11 9 1868 0.07 0.06 17% 131 0.02 0.01 74%
z4(2) 12×12 5 70 0.03 0.02 51% 14 0.03 0 90%

Synthesis with Quantified Boolean Logic [9]
add6_G_1 5×3 4 31 0.15 0.13 13% 32 0.14 0.13 7%
alu2_G_2 7×3 8 464 0.1 0.09 14% 384 0.08 0.07 5%
b11_G_1 3×5 7 45 0.03 0.02 7% 128 0.07 0.07 7%
dc2_G_0 4×4 7 104 0.06 0.05 13% 132 0.07 0.06 13%

Table 2: Overall results of the simulations
Synthesis
Method

Average
area

Average
n

S0C S0L % R0
r×s S1C S1L % R1

r×s

[2] 30 6 0.05 0.05 20% 0.06 0.05 29%
[9] 15 7 0.07 0.06 9% 0.07 0.07 8%

In Table 1, we report a sample of benchmark functions and their
sensitivity values, according to the metrics presented before. In
particular, Table 1 refers to lattice synthesized as described in [2]
and [9]. The benchmarks that are present in Table 1 with dual
method were stopped after ten minutes of SAT execution, but that
was not the case for the rest.

More precisely, in both methods, the first column reports the
name and the number of the considered output of each function.
The following columns report dimension (r × s) required for the
synthesis of a given function according to each decomposition
method, and the number of input variables n. Columns from 4 to
7 refers to SA0 defect metrics (resp., columns from 8 to 11 to SA1
metrics) showing the total number of errors E0, the Sensitivity of
defective cells S0C , the Sensitivity of lattice S0L and the percentage
of robust cells %R0/r × s .

Table 2 describes the overall results for the benchmarks we have
considered. It also shows the average values for the considered
metrics. We can note that the percentage of cells that are considered
robust according to our metrics is higher in the first approach [2].
This is due to themore constrained structure of the lattices produced
by the first synthesis method. Indeed, the method proposed in
[2] computes a lattice for f and its dual that is in general less
compact than the lattice given by [9] (see, the column Average area
in Table 2). Moreover, we can note that the sensitivity of the lattice
to stuck-at-defects (SAD) is quite low for both methods. In fact, the
experiments show that, in general, non-robust cells -in presence of
a SAD- compute a defective output for a very limited number of
inputs.

4.2.4 Mitigation by Defect Avoidance. From the above results,
it can be seen that the two analyzed mapping algorithm shows
different sensitivities of the output of a given function. As a matter
of fact, the more restrictive an algorithm is in terms of area (results
closer to optimal solution), the higher the defect sensitivity of the
output to cell defect of SA0 or SA1. It is mandatory to include in
the mapping algorithm defect-avoidance heuristics.

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒,𝒙𝟕 𝒙𝟒

𝒙𝟓
𝒙𝟔,𝒙𝟒,
𝒙𝟕

𝒙𝟒 𝒙𝟕 𝒙𝟔

𝒙𝟕 𝒙𝟒
𝒙𝟕,𝒙𝟒,
𝒙𝟔

𝒙𝟔 𝒙𝟕

𝒙𝟒 𝒙𝟕 𝒙𝟔
𝒙𝟒,𝒙𝟔,
𝒙𝟕

𝒙𝟒

𝒙𝟒,𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒
𝒙𝟒,𝒙𝟔,
𝒙𝟕

𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒

𝒙𝟕 𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔

𝒙𝟒 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕

𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟒 𝒙𝟒

𝒙𝟔 𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

𝒇 = 𝒙𝟒𝒙𝟓𝒙𝟕 + 𝒙𝟒𝒙𝟔𝒙𝟕 + 𝒙𝟒 𝒙𝟓𝒙𝟔𝒙𝟕 + 𝒙𝟒𝒙𝟔 𝒙𝟕 + 𝒙𝟒𝒙𝟔𝒙𝟕

𝒙𝟒 𝒙𝟕 𝒙𝟓 𝒙𝟒 𝒙𝟒

𝒙𝟓 𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔

𝒙𝟕 𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕

𝒙𝟒 𝒙𝟕 𝒙𝟔 𝒙𝟕 𝒙𝟒

𝒙𝟒 𝒙𝟔 𝒙𝟕 𝒙𝟒 𝒙𝟕

Given Logic Function
P

o
s

s
ib

le
 L

ite
ra

l

A
p

p
o

in
tm

e
n

ts

a)

b) c)

Figure 6: a) defect-free lattice; b) lattice with defects: SA0 in
red and SA1 in blue; and c) lattice with the defect fixed.

In order to mitigate the sensitivity of a lattice to SAD, we propose
the following possible strategy applied to the synthesis method
proposed in [2] which has been proven as less sensitive to SAD
impact on the output functions: (1) For a given mapped function, if a
potential SA0, SA1 defect affects a robust cell identified by the defect
injection campaign, the lattice still computes the correct output,
thus we do not need any mitigation with defect tolerant design. (2)
However, if an injected defect occurs in a multiple-choice cell, if a
different literal can be chosen to make the cell robust, we change the
literal with the new one. (3) Otherwise, if the injected SA0 defect
is proven as being critical for the output value, the column that
contains that defective cell has to be replaced by spare columns.
In case of an SA1 the row that contains the defective cell has to
be replaced by a spare row. Note that, in this case, the output still
provides a correct function f from top to bottom, but the function
from left to right could be changed and become a function which
will not be dual of f anymore.

As an example, consider the lattice synthesized in Figure 6(a)
with f = x4x5x7 + x4x6x7 + x4x5x6x7 + x4x6x7 + x4x6x7 by using
synthesis method presented in [2]. The example shows one case of
mitigation of 3 independent SAD affecting the crossbar implement-
ing the function, yielding an approximative 10% defects. In Figure
6, SA1 cells are marked in blue and SA0 cells a remarked in red.

4.3 Transient Fault Tolerance
Regarding transient faults, there are two approaches: redundancy
based and manipulation of logic function to obtain a more fault
tolerant design. Nevertheless, it should be noted that since nano-
crossbars are in the early stage of development, there is a lack
of in-field data regarding transient faults. For this reason, second
approach towards transient fault tolerance is methodology inde-
pendent and rather focuses on the intrinsic features of the given
logic functions.

NANOARCH’18, 18-19 July 2018, Athens, Greece M. C. Morgul et al.

As mentioned, transient faults can be tolerated with redundancy.
Inserting redundant components can be constructed with adding
extra rows and/or columns as shown [16] [3].

Furthermore, provided certain conditions, particular logic func-
tions are inherently tolerant to transient faults limited to certain
switches of crossbar as show in [21].

Mentioned inherent tolerance capability varies depending on the
design. For example, consider a design having low logic inclusion
ratio (IR), meaning less number of crosspoints of a crossbar are
used, that means this design is more tolerant to stuck-at-0 faults.
Logic synthesis (design) should be made with regard to this, since
there are multiple design solution.

Similarly, if the target function can be realized with high IR, then
a technology, the one which tends to have stuck-at-1 faults, should
be preferred. for example function f = x1x2 + x2x3 + x3x4 can also
be written as f ′ = x1x2x3 + x2x3 + x3x4 = f , therefore IR can be
increased.

Fault sensitivity analysis can bemade usingMonte Carlo analysis,
yet it is costly. Since we know the dynamics of the fault tolerance
we can calculate sensitivity (fault tolerance performance) directly
with algebraic equations. Equation parameters consists of crossbar
dimensions, inclusion ratio, fault occurrence possibility and number
of tolerable crosspoint. For further information please refer to [21].

5 VARIANCE TOLERANCE AND
PERFORMANCE OPTIMIZATION

Another aspect of the crossbar fabrication is that every crosspoint
does not have the same property in terms of dimension, doping,
etc. [14]. It is called variance of crosspoints. This affects threshold
voltages andON andOFF resistances aswell as capacitance values. It
means that delay and power performances are changing. Decision
of which crosspoint switches are going to be used during logic
design plays a crucial role in performance optimization. To achieve
variation tolerant delay values, different optimization algorithms
have been proposed [28] [15]. These algorithms aim to optimize
the worst-case delay values in logic mapping. They use Gaussian
distribution to model variances.

On the other hand, the literature lacks variation tolerant power
optimization algorithms. Considering that fault tolerance mecha-
nism can be appended to the delay minimization process, variation-
power-delay optimizations are needed. This can be considered as a
future direction. Another future direction is performing sensitivity
analysis for switching components of the arrays.

6 CONCLUSION AND DISCUSSION
In this study, we present a synthesis methodology for crossbar ar-
rays having crosspoints working as FET, diode/resistive/memristive,
or four-terminal switch based devices. We cover "logic synthesis",
"defect/fault tolerance", and "variation-area-power-delay perfor-
mance optimization" steps. Presented synthesis methodology pro-
vides optimization algorithms for each step of the process as well
as their relations and trade-offs.

REFERENCES
[1] Dan Alexandrescu, Mustafa Altun, Lorena Anghel, Anna Bernasconi, Valentina

Ciriani, Luca Frontini, and Mehdi Tahoori. 2016. Synthesis and Performance
Optimization of a Switching Nano-Crossbar Computer. In Digital System Design
(DSD), 2016 Euromicro Conference on. IEEE, 334–341.

[2] Mustafa Altun and Marc D Riedel. 2012. Logic synthesis for switching lattices.
IEEE Trans. Comput. 61, 11 (2012), 1588–1600.

[3] Samary Baranov, Ilya Levin, Osnat Keren, and M Karpovsky. 2009. Designing
fault tolerant FSM by nano-PLA. In On-Line Testing Symposium, 2009. IOLTS 2009.
15th IEEE International. IEEE, 229–234.

[4] Anna Bernasconi, Valentina Ciriani, Luca Frontini, Valentino Liberali, Gabriella
Trucco, and Tiziano Villa. 2016. Logic Synthesis for Switching Lattices by De-
composition with P-Circuits. In Digital System Design (DSD), 2016 Euromicro
Conference on. IEEE, 423–430.

[5] Anna Bernasconi, Valentina Ciriani, Luca Frontini, and Gabriella Trucco. 2016.
Synthesis on switching lattices of Dimension-reducible Boolean functions. In
Very Large Scale Integration (VLSI-SoC), 2016 IFIP/IEEE International Conference
on. IEEE, 1–6.

[6] Anna Bernasconi, Valentina Ciriani, Luca Frontini, and Gabriella Trucco. 2017.
Composition of Switching Lattices and Autosymmetric Boolean Function Synthe-
sis. In Digital System Design (DSD), 2017 Euromicro Conference on. IEEE, 137–144.

[7] Yong Chen, Gun-Young Jung, Douglas AA Ohlberg, Xuema Li, Duncan R Stewart,
Jan O Jeppesen, Kent A Nielsen, J Fraser Stoddart, and R Stanley Williams. 2003.
Nanoscale molecular-switch crossbar circuits. Nanotechnology 14, 4 (2003), 462.

[8] Andre DeHon and Benjamin Gojman. 2011. Crystals and snowflakes: building
computation from nanowire crossbars. Computer 2 (2011), 37–45.

[9] Graeme Gange, Harald Søndergaard, and Peter J Stuckey. 2014. Synthesizing
optimal switching lattices. ACM Transactions on Design Automation of Electronic
Systems (TODAES) 20, 1 (2014), 6.

[10] Benjamin Gojman and André DeHon. 2009. VMATCH: Using logical varia-
tion to counteract physical variation in bottom-up, nanoscale systems. In Field-
Programmable Technology, 2009. FPT 2009. International Conference on. IEEE,
78–87.

[11] Yu Huang, Xiangfeng Duan, Yi Cui, Lincoln J Lauhon, Kyoung-Ha Kim, and
Charles M Lieber. 2001. Logic gates and computation from assembled nanowire
building blocks. Science 294, 5545 (2001), 1313–1317.

[12] Muhammed Ceylan Morgül and Mustafa Altun. 2014. Anahtarlamalı Nano
Dizinler ile Lojik Devre Tasarımı ve Boyut Optimizasyonu Logic Circuit Design
with Switching Nano Arrays and Area Optimization. In ELECO.

[13] Muhammed Ceylan Morgul and Mustafa Altun. 2015. Synthesis and optimization
of switching nanoarrays. InDesign and Diagnostics of Electronic Circuits & Systems
(DDECS), 2015 IEEE 18th International Symposium on. IEEE, 161–164.

[14] Muhammed Ceylan Morgul, Furkan Peker, and Mustafa Altun. 2016. Power-
Delay-Area Performance Modeling and Analysis for Nano-Crossbar Arrays. In
VLSI (ISVLSI), 2016 IEEE Computer Society Annual Symposium on. IEEE, 437–442.

[15] Furkan Peker and Mustafa Altun. 2018. A Fast Hill Climbing Algorithm for
Defect and Variation Tolerant Logic Mapping of Nano-Crossbar Arrays. IEEE
Transactions on Multi-Scale Computing Systems (2018), 1–1.

[16] Wenjing Rao, Alex Orailoglu, and Ramesh Karri. 2007. Logic level fault tolerance
approaches targeting nanoelectronics plas. InDesign, Automation & Test in Europe
Conference & Exhibition, 2007. DATE’07. IEEE, 1–5.

[17] Anish Man Singh Shrestha, Satoshi Tayu, and Shuichi Ueno. 2009. Orthogonal
Ray Graphs and Nano-PLA Design.. In ISCAS. 2930–2933.

[18] G Snider. 2005. Computing with hysteretic resistor crossbars. Applied Physics A:
Materials Science & Processing 80, 6 (2005), 1165–1172.

[19] Greg Snider, P Kuekes, T Hogg, and R Stanley Williams. 2005. Nanoelectronic
architectures. Applied Physics A 80, 6 (2005), 1183–1195.

[20] Greg Snider, Philip Kuekes, and R Stanley Williams. 2004. CMOS-like logic in
defective, nanoscale crossbars. Nanotechnology 15, 8 (2004), 881.

[21] Onur Tunali and Mustafa Altun. 2017. Permanent and transient fault tolerance
for reconfigurable nano-crossbar arrays. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 36, 5 (2017), 747–760.

[22] Onur Tunali and Mustafa Altun. 2017. A Survey of Fault-Tolerance Algorithms
for Reconfigurable Nano-Crossbar Arrays. ACM Comput. Surv. 50, 6, Article 79
(Nov. 2017), 35 pages.

[23] Onur Tunali and Mustafa Altun. 2018. Logic Synthesis and Defect Tolerance for
Memristive Crossbar Arrays. In Design, Automation and Test in Europe Conference
and Exhibition (DATE), 2018.

[24] Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, and Koen
Bertels. 2015. Fast boolean logic mapped on memristor crossbar. In Computer
Design (ICCD), 2015 33rd IEEE International Conference on. IEEE, 335–342.

[25] Hao Yan, Hwan Sung Choe, SungWoo Nam, Yongjie Hu, Shamik Das, James F
Klemic, James C Ellenbogen, and CharlesM Lieber. 2011. Programmable nanowire
circuits for nanoprocessors. Nature 470, 7333 (2011), 240–244.

[26] Saeyang Yang. 1991. Logic synthesis and optimization benchmarks user guide:
version 3.0. Microelectronics Center of North Carolina (MCNC).

[27] Bo Yuan and Bin Li. 2014. A fast extraction algorithm for defect-free subcrossbar
in nanoelectronic crossbar. ACM Journal on Emerging Technologies in Computing
Systems (JETC) 10, 3 (2014), 25.

[28] Bo Yuan, Bin Li, Huanhuan Chen, and Xin Yao. 2016. Defect-and Variation-
Tolerant Logic Mapping in Nanocrossbar Using Bipartite Matching and Memetic
Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 9
(2016), 2813–2826.

	Abstract
	1 Introduction
	2 Proposed Integration Methodology
	3 Logic Synthesis
	4 Defect/Fault Tolerance
	4.1 Defect Tolerance for Diode, Memristor and FET
	4.2 Defect Tolerance for Four-terminal
	4.3 Transient Fault Tolerance

	5 Variance Tolerance and Performance Optimization
	6 Conclusion and Discussion
	References

