BLG231E Digital Circuits
 Homework 1

Deadline: 21/10/2016 (before 9:30)

1. CONVERSION BETWEEN NUMBER REPRESENTATIONS

Perform the following number conversions:
a) Binary $(100111.10111)_{2}$ to decimal, octal and hexadecimal.
b) Octal (72.6) 8 to decimal, binary and hexadecimal.
c) Hexadecimal (C3.AD5 $)_{16}$ to decimal, binary and octal.
d) Binary $(11011100101010101010100010111111101000111111)_{2}$ to hexadecimal

2. SIMPLIFIED SUM OF PRODUCT (SOP) EXPRESSIONS

Express the following Boolean functions in SOP forms with using minimum number literals. Write down the total number of literals for your simplified expressions (for example, $x_{1} \overline{x_{2}} x_{3}+x_{1} \overline{x_{3}}$ has 5 literals).
a) $f_{1}=\overline{x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}}$
b) $f_{2}=\overline{x_{1} x_{2} x_{3}+x_{1} x_{4}}$
c) $f_{3}=\overline{x_{1} \overline{x_{2}} x_{3}+x_{1} \overline{x_{4}}+x_{2} x_{3} \overline{x_{4}}}$
d) $f_{4}=\overline{x_{1} x_{2} \overline{x_{3}}+x_{1} \overline{x_{2}} x_{3}+\overline{x_{1}} x_{2} x_{3}+\overline{x_{1}} \overline{x_{2}} \overline{\overline{x_{3}}}}$

3. DESIGNING A 4-INPUT \& 1-OUTPUT CIRCUIT

Consider a circuit with 4 inputs and 1 output such that a transition (0 -to-1 or 1-to-0) in one of the inputs always results in a transition at the output (0 -to- 1 or 1-to- 0). Derive the truth table of this circuit.

4. DESIGNING A 1-BIT FULL ADDER

Consider a 1-bit full adder with its circuit symbol and truth table shown below.

Inputs			Outputs	
A B Cin	Cout \mathbf{S}			
0	0	0	0	
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

a) Derive Boolean functions of the outputs in terms of the inputs in both SOP and POS forms. There should be total of 4 expressions.
b) Implement the adder by only using NAND-2 gates. In your implementation, you need to use the expressions derived in a). Minimize the number of NAND-2 gates in your design.
c) Implement the adder by only using NOR-2 gates. In your implementation, you need to use the expressions derived in a). Minimize the number of NOR-2 gates in your design.

Grading: 1a)3\%, (b)3\%, 1c)3\%, 1d)3\% $2 a) 7 \%, 2 b) 7 \%, 2 c) 7 \%, 2 d) 7 \%$ 3)15\%
$4 a) 15 \%, 4 b) 15 \%, 4 c) 15 \%$
Note: Return a hard-copy of your homework.

