EHB222E Introduction to Electronics MIDTERM I

Duration: 120 Minutes
Grading: 1) 15%, 2) 30%, 3) 25%, 4) 30%
Exam is in closed-notes and closed-books format; calculators are allowed
For your answers please use the space provided in the exam sheet

GOOD LUCK!

1. The current-voltage equation of a p -n diode is given as $I_{D}=I_{S}\left(e^{V_{D} / n V_{T}}-1\right)$ where $I_{S}=A q n_{i}^{2}\left(\frac{D_{p}}{L_{p} N_{D}}+\frac{D_{n}}{L_{n} N_{A}}\right)$. Additionally, $L_{p}=\sqrt{D_{p} \tau_{p}}$ and $L_{n}=\sqrt{D_{n} \tau_{n}}$. The diode conducts current of $-10^{-15} \mathrm{~A}$ when -3 V voltage applied. Determine the junction area \boldsymbol{A}. with a unit of $\boldsymbol{\mu} \mathbf{m}^{2}$.

Parameters: $n_{i}=2,510^{10} / \mathrm{cm}^{3}, N_{D}=10^{17} / \mathrm{cm}^{3}, N_{A}=10^{15} / \mathrm{cm}^{3}, \mathrm{q}=1,610^{-19} \mathrm{C}, 1 \leq \mathrm{n} \leq 2$, $V_{T}=25 \mathrm{mV}, D_{n}=100 \mathrm{~cm}^{2} / \mathrm{s}, D_{p}=16 \mathrm{~cm}^{2} / \mathrm{s}, \tau_{n}=\tau_{p}=1 \mu \mathrm{sec}$.
2. For the diodes, use the models shown below; the regular diode model has $\mathbf{0 , 7 V}$ forward bias voltage; the Zener diode model has $\mathbf{- 3 V}$ breakdown voltage.
a. Determine the minimum positive value of $\boldsymbol{I}_{\boldsymbol{i n}}$ to make D_{1} conduct current.
b. Determine the minimum positive value of \boldsymbol{I} in to make D_{2} conduct current.
c. Sketch $\boldsymbol{V}_{\text {out }}$ versus $\boldsymbol{I}_{\text {in }}\left(0 \leq I_{\text {in }} \leq 10 \mathrm{~mA}\right)$.

Regular Diode Model

Zener Diode Model
3. Consider a voltage source shown below. It drives a load with a minimum value of $100 \Omega ; \mathrm{R}_{\mathrm{Y}} \geq 100 \Omega$. Its output voltage should be around $3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{Y}} \approx 3.3 \mathrm{~V}$. Determine the maximum value of $\mathbf{R}_{\mathbf{1}}$.

Voltage Source

Zener Diode Model, Vzk=4V

Transistor parameters: $V_{B E}=0.7, \beta=100, V_{A}=\infty$.
4. For the circuit shown below, suppose that all of the transistors are in forward active region; $\left|V_{B E}\right|=0.7 \mathrm{~V}, \beta=200$, and $\left|V_{A}\right|=\infty$ for all transistors.
a. If $\mathrm{Vi}=0 \mathrm{~V}$, determine the values of $\boldsymbol{I}_{\boldsymbol{C}_{1}}, \boldsymbol{I}_{\boldsymbol{C}_{2}}$, and $\boldsymbol{I}_{\boldsymbol{C}_{3}}$.
b. If $\mathrm{Vi}=0 \mathrm{~V}$ and $I_{C_{4}}=0,5 \mathrm{~mA}$, determine the value of $\mathbf{R}_{\text {E4 }}$.

