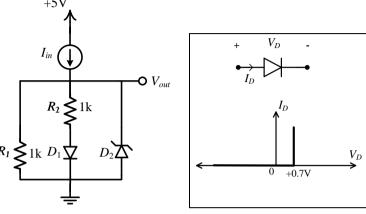
Student Name: Instructor: Mustafa Altun

Student ID:

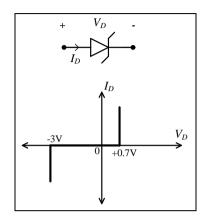
Date: 16/03/2015

EHB222E Introduction to Electronics MIDTERM I

Duration: 120 Minutes

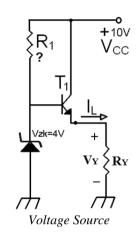

Grading: 1) 15%, 2) 30%, 3) 25%, 4) 30%

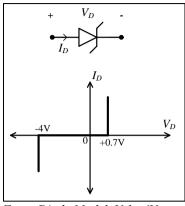
Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet GOOD LUCK!


1. The current-voltage equation of a p-n diode is given as $I_D = I_S (e^{V_D/nV_T} - 1)$ where $I_S = Aqn_i^2 \left(\frac{D_p}{L_pN_D} + \frac{D_n}{L_nN_A}\right)$. Additionally, $L_p = \sqrt{D_p\tau_p}$ and $L_n = \sqrt{D_n\tau_n}$. The diode conducts current of -10⁻¹⁵A when -3V voltage applied. Determine the **junction area** A. with a unit of μm^2 .

Parameters: $n_i = 2.5 \cdot 10^{10} / \text{cm}^3$, $N_D = 10^{17} / \text{cm}^3$, $N_A = 10^{15} / \text{cm}^3$, $q = 1.6 \cdot 10^{-19} \text{C}$, $1 \le n \le 2$, $V_T = 25 \text{ mV}$, $D_n = 100 \text{ cm}^2/\text{s}$, $D_p = 16 \text{ cm}^2/\text{s}$, $\tau_n = \tau_p = 1 \text{ µsec}$.

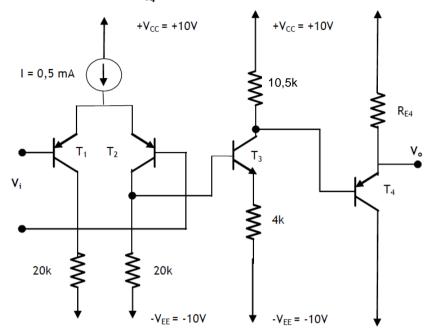
- 2. For the diodes, use the models shown below; the regular diode model has 0,7V forward bias voltage; the Zener diode model has -3V breakdown voltage.
 - a. Determine the minimum positive value of I_{in} to make D_1 conduct current.
 - b. Determine the minimum positive value of I_{in} to make D_2 conduct current.
 - c. Sketch V_{out} versus I_{in} $(0 \le I_{in} \le 10 \text{mA})$.




Regular Diode Model

Zener Diode Model

3. Consider a voltage source shown below. It drives a load with a minimum value of 100Ω ; $R_Y \ge 100\Omega$. Its output voltage should be around 3.3V; $V_Y \approx 3.3V$. Determine the maximum value of R_1 .



Zener Diode Model, Vzk=4V

Transistor parameters: $V_{BE} = 0.7$, $\beta = 100$, $V_A = \infty$.

- 4. For the circuit shown below, suppose that all of the transistors are in forward active region; $|V_{BE}|=0.7\text{V}$, $\beta=200$, and $|V_A|=\infty$ for all transistors.
 - a. If Vi=0V, determine the values of I_{C_1} , I_{C_2} , and I_{C_3} . b. If Vi=0V and I_{C_4} =0,5mA, determine the value of $\mathbf{R}_{\mathbf{E}4}$.

