
A

A Survey of Fault Tolerance Algorithms for Reconfigurable
Nano-Crossbar Arrays

ONUR TUNALI, Istanbul Technical University
MUSTAFA ALTUN, Istanbul Technical University

Nano-crossbar arrays have emerged as a promising and viable technology to improve computing perfor-
mance of electronic circuits beyond the limits of current CMOS. Arrays offer both structural efficiency with
reconfiguration and prospective capability of integration with different technologies. However, certain prob-
lems need to be addressed and the most important one is the prevailing occurrence of faults. Considering
fault rate projections as high as 20% that is much higher than those of CMOS, it is fair to expect sophis-
ticated fault tolerance methods. The focus of this survey paper is the assessment and evaluation of these
methods and related algorithms applied in logic mapping and configuration processes. As a start, we con-
cisely explain reconfigurable nano-crossbar arrays with their fault characteristics and models. Following
that, we demonstrate configuration techniques of the arrays in the presence of permanent faults and elabo-
rate on two main fault tolerance methodologies, namely defect-unaware and defect-aware approaches, with
a short review on advantages and disadvantages. For both methodologies, we present detailed experimental
results of related algorithms regarding their strengths and weaknesses with a comprehensive yield, suc-
cess rate, and runtime analysis. Next, we overview fault tolerance approaches for transient faults. As a
conclusion, we overview the proposed algorithms with future directions and upcoming challenges.

CCS Concepts: rGeneral and reference → Surveys and overviews; rHardware → Emerging archi-
tectures; Fault Tolerance;

General Terms: Nano-crossbar, Realiability, Fault Tolerance

Additional Key Words and Phrases: Fault Tolerance, Nano-crossbar

ACM Reference Format:
Onur Tunali and Mustafa Altun, 2017. A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-
Crossbar Arrays ACM Comput. Surv. V, N, Article A (January YYYY), 35 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Since the first digital computer was developed in 1930’s, several breakthroughs have
been made both in technological and computational levels to improve the performance
of computers. Researchers have aimed at finding the best way to realize the fundamen-
tal building element of computers that is a two-terminal switch. First electromechani-
cal systems, then respectively vacuum tubes, p-n junction based diodes & transistors,
and CMOS transistors are used as switches. Considering these different eras, without
a question CMOS era is the longest prevailing and the most fruitful one. For more than
50 years, CMOS computing performance has increased almost in a regular manner,
that is often called the Moore’s law [Schaller 1997]. However, this trend has started to
slow down, and it is widely accepted that another transition to a new era is soon to be
occurred [Dubash 2005] and [Conte and Gargini 2015].

This work is supported by the EU-H2020-RISE project NANOxCOMP #691178 and the TUBITAK-Career
project #113E760.
Author’s addresses: O. Tunali, Nanoscience an Nanoengineering Department, Istanbul Technical Univer-
sity; M. Altun, Electronics and Communication Engineering Department, Istanbul Technical University;
Istanbul 36064; E-mails: onur.tunali, altunmus@itu.edu.tr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© YYYY Copyright held by the owner/author(s). 0360-0300/YYYY/01-ARTA $15.00
DOI: 0000001.0000001

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 O. Tunali and M. Altun

At this point, a significant amount of research has been dedicated to nanoscale tech-
nologies with new materials including nanotubes, nanowires, and individual molecules
being used to implement a switch [Waser 2012]. Although computing performances
of these individual switches are quite satisfactory, generally much better than those
of CMOS, there are still problems to be solved before the commercialization: 1) In-
tegration of individual switching elements to generate a fully functional computing
architecture is quite costly; and 2) The final forms of architectures are not immune to
unusually high fault rates. In this regard, nano-crossbar arrays have been favored by
researchers such as nanofabric using molecular switches (programmable diodes) [Gold-
stein and Budiu 2001], nanoPLA using programmable diode [Dehon 2005], CMOS-like
structures using nFET or pFET transistors [Snider et al. 2005], CMOL using pro-
grammable diodes [Strukov and Likharev 2005], NASIC using FET transistors or
diodes [Wang et al. 2008], [Morgul et al. 2016], and [Alexandrescu et al. 2016]. An-
other prospective technology is based on memristors or memristive switches which is
constructed as crossbar-like structures [Yang et al. 2013] and having the same logic
mapping approach [Xie et al. 2015]. Moreover, as a physical realization, three fully op-
erational implementations of nano-crossbar arrays as nanocomputers are shown to be
feasible in [Yan et al. 2011], [Shulaker et al. 2013], and [Yao et al. 2014]. Even though
these technologies differ in certain levels, basic computing blocks are always crossbars
with each crosspoint behaving as a switch, so logic mapping schemes are similar.

Arrays offer both structural efficiency with reconfiguration and prospective capabil-
ity of integration. In addition, inherent redundancy present in nano-crossbars provides
flexibility for fault tolerance that is a much needed help considering that fault toler-
ance is the main challenge to be resolved. Fault rate projections of nano-crossbars are
as high as 20% that is much higher than those of CMOS due mainly to the used bottom-
up fabrication techniques with self-assembly that has stochastic nature as opposed to
using conventional top-down fabrication techniques with directed-assembly [Wu et al.
2005], [Huang et al. 2001], [Chen et al. 2003], and [Haselman and Hauck 2010]. There-
fore, it is fair to expect sophisticated fault tolerance methods for nano-crossbars. The
focus of this survey paper is the assessment and evaluation of fault tolerance meth-
ods and related algorithms applied in logic mapping and configuration processes of
nano-crossbar arrays.

Prior to examining fault tolerance techniques in the literature, a very coarse de-
scription of a common crossbar structure and its computing fundamentals can be sum-
marized as follows. Nano-crossbar arrays are formed by placing a group of lines/wires
aligned parallel to each other on another group of array lines/wires orthogonally. Verti-
cal and horizontal lines are used as input and outputs, respectively. This is illustrated
in Figure 1 (a). Boolean literals are applied to input lines, and each output line corre-
sponds to a product, i.e., AND of literals. Therefore a given function in sum-of-products
form can be directly implemented by using each product with an output line by deac-
tivating and activating relevant crosspoints. Note that other forms based on factored
Boolean expressions or binary decision diagrams can not be used since these forms
require certain wirings/connections between lines and crosspoints that is not applica-
ble for nano arrays [Dehon 2005], [Snider et al. 2005], and [Alexandrescu et al. 2016].
While a deactivated crosspoint behaves as an open circuit between the crossed lines,
an activated crosspoint is a two-terminal switch that can behave as a diode [Ziegler
and Stan 2003] or a FET [Zhong et al. 2003]. This is shown in Figure 1 (b). If the
components are ON (OFF) then their terminals are shorted (open). Note that the dis-
tinction of the components is that their ON (OFF) states connect (disconnect) terminals
in different lines.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:3

Nano-Crossbar Array

Input Lines

Cross Section

of an Activated

Crosspoint

Switching Element

O
u

tp
u

t
L

in
e

s

Power

Supply

T1

T2

: Terminals

Two-terminal Switch

Input

O
u

tp
u

t

T1 T2
Input

T2T1

O
u

tp
u

t

(a)

(b)

: Activated

Fig. 1. A nano-crossbar array: (a) activated and deactivated crosspoints, and (b) a switching crosspoint
behaving as an electrical component either a diode or a FET.

1.1. Fault Tolerance in Programmable Logic Arrays
In a historical context, nano-crossbar structures are very similar to programmable
logic arrays (PLA’s) introduced in [Fleisher and Maissel 1975], in terms of circuit struc-
tures, programming features, and utilization. Therefore examining the progression of
fault tolerance studies regarding PLA’s can be insightful. Particular aspects are as
follows: 1) Test generation and fault detection [Ostapko and Hong 1979] and [Smith
1979] which basically deals with producing comprehensive test vectors; 2) Yield analy-
sis and redundancy employment [Wey et al. 1987] and [Wey 1988] which aims to max-
imize yield and allocate redundant elements; and 3) Fault modeling with simulations
[Ligthart and Stans 1991] which formalizes the type of faults for stuck-at, bridging,
missing, and broken crosspoints that is also adopted in nano-crossbar terminology.
Additionally, different from these studies, in [Demjanenko and Upadhyaya 1990] fault
tolerance is achieved with reconfiguration of a PLA by using bipartite graph model
which can be considered as the archetype of the techniques used in nano-crossbars.
In this study, exaggeratedly high fault rates are considered similar to the treatment
in nano-crossbars. Indeed, developed with a well established CMOS technology, PLA’s
do have considerably low fault rates. Therefore simple configuration approaches are
adequate for fault tolerance that justifies the lack of related studies in the literature
after 1990’s.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 O. Tunali and M. Altun

Table I. Permanent versus Transient Faults.

Permanent Faults (Defects) Transient Faults
• Occurring mostly in fabrication • Occurring in field
• Tolerated in design phase • Tolerated in use phase
• Tolerated by configuration (mapping) • Tolerated by reconfiguration or redundancy

1.2. Fault Tolerance in Nano-Crossbar Arrays
Examining the fault tolerance techniques in the literature, we see a common ten-
dency of considering faults causing only phase shifts between activated and deacti-
vated crosspoints [Tahoori 2006], [Al-Yamani et al. 2007], [Zheng and Huang 2009],
[Gören et al. 2011], [Su and Rao 2014], [Yuan and Li 2014], and [Tunali and Altun
2017]. Only a few studies consider faults affecting the functionality of electrical com-
ponents in crosspoints that causes phase shifts between ON and OFF states of the
components [Bhaduri et al. 2004], [Gil et al. 2008], and [Zamani et al. 2013]. Indeed,
component based fault modeling is more appropriate for failures seen in field, and this
is not quite applicable for emerging technologies, because they have very limited field
data including nano-crossbar arrays. Another reason favoring activated/deactivated
crosspoint based fault modeling is its capability to deal with faults occurring in input
and output lines such as broken and bridging faults. For example, all crosspoints of a
broken line can be modeled as deactivated.

Another examination is that distinct approaches are proposed to tolerate permanent
and transient faults regarding their exclusive natures as summarized in Table I. While
permanent faults called as defects are related to the configuration of nano-crossbars
that is performed during post fabrication, transient faults occurring in field are toler-
ated using either redundancies or detection-reconfiguration cycles.

1.2.1. Permanent Fault Tolerance. In the presence of permanent faults called as defects,
tolerance is achieved by mapping Boolean logic functions on a defective crossbar us-
ing crossbar row and column permutations. This is an NP-complete problem [Shrestha
et al. 2009]. For the worst-case scenario, implementing a given function with an N×M
crossbar requires N !M ! permutations; computing time quickly grows to intractable
levels with the crossbar size. Additionally, high fault rates complicate the mapping
process by constraining the possible valid choices. Nevertheless, seminal Teramac ex-
periment in [Amerson et al. 1995] shows that it is possible to produce reliable com-
puting with using components having excessive faulty parts. As specified in [Heath
et al. 1998], as long as adequate connectivity and efficient algorithms for configuring
present, it is feasible to use a reconfigurable nano-crossbar to obtain reliable comput-
ing structures. In the literature, proposed defect-tolerant logic mapping algorithms of
nano-crossbars can be categorized under two main methodologies: defect-unaware and
defect-aware. However, it should be noted that both methods use a defect map which
shows the location of faults in nano-crossbar, so a more intuitive naming would be
“defect-avoiding” and “defect-employing”. Nevertheless, we follow the prevalent termi-
nology present widely in the literature.

Defect-unaware methods determine the size of an n × n nano-crossbar in order to
obtain a k × k defect-free sub-crossbar, so it is possible to know the required size of
a crossbar in advance to implement a given logic function. Using the defect-free sub-
crossbar, a straightforward mapping process can be applied. However, the number of
studies in this field is limited due to the inefficient area yield. There is a common
shortcoming especially for high fault rates – obtained k values are much smaller than
n. When N = 250 and the fault rate is 15% that is a reasonable value for nano arrays,
the proposed algorithms find k values as high as 30 [Yuan and Li 2014]. It means
that only 1% of the crossbar can be used. Proposed algorithms use graph based models

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:5

and heuristics to solve the maximum independent set problem in a complement graph
[Tahoori 2006], [Al-Yamani et al. 2007], [Yuan and Li 2011], and [Yuan and Li 2014].

Defect-aware logic mapping methods employ defective elements in the mapping pro-
cess that results in much better area yields. However, the mapping process is more
complicated. The number of studies in this field is abundant due to flexible nature of
formalizing the problem. Earlier works utilize graph based models including [Naeimi
and DeHon 2004] solving the bipartite matching problem with a greedy approach and
[Rao et al. 2009] solving the graph embedding problem with a recursive approach. Ad-
ditionally, [Yellambalase and Choi 2008] examine the effect of clustered defects with
a matrix based algorithm, and [Zheng and Huang 2009] uses satisfiability approach
for the mapping process. Another greedy algorithm is proposed in [Simsir et al. 2009]
using partial graph constructing. Apart from the graph based models, an ILP model
is used in [Yang and Datta 2011] and [Zamani et al. 2013] by introducing constraints
related to nano-crossbar defects. Furthermore a novel approach benefiting from graph
canonization with sorting is used in [Gören et al. 2011]. In order to handle scalabil-
ity more efficiently compared to the above methods, [Naeimi and DeHon 2004] uses a
greedy approach; [Yuan et al. 2014] uses a graph based approach with memetic fitness
approximation; and [Tunali and Altun 2017] implements matrix sorting supported by
greedy backtracking.

1.2.2. Transient Fault Tolerance. Another aspect of fault tolerance in nano-crossbars is
the transient faults occurring in field. Similar to conventional technologies targeting
transient faults, hardware redundant solutions are proposed. In [Rao et al. 2007], two
approaches using an online test with reconfiguration and a fault masking scheme are
investigated. Comparing the approaches, fault masking offers smaller hardware over-
head at the cost of having very limited capability of tolerating multiple faults. In [Rao
et al. 2009], another fault masking method with a focus on missing devices (denoted
with stuck-at deactivated faults in this paper) is proposed with utilizing logic tautolo-
gies. In [Garcia and Orailoglu 2008], an alternative reconfiguration based fault toler-
ance scheme is proposed with novel online testing using a text vector compaction. It
is possible to accomplish input/output level diagnoses with reduced runtime by means
of the proposed test vectors. Even though a fault tolerance mechanism is excluded, a
novel error detection method proposed in [Farazmand and Tahoori 2009]. Logic im-
plementation is realized with a dual rail structure having both the function and its
negation as outputs. By comparing the outputs, it is possible to detect faults conform-
ing to certain assumptions of fault characteristics. So far mentioned papers are related
to the logic synthesis level of fault tolerance. In [He et al. 2005] and [He and Jacome
2007], a high level synthesis paradigm with reconfiguration is proposed with choosing
certain mapping units with an optimization among many solutions.

It should be noted that transient fault tolerance of nano-crossbar arrays is in ex-
ploratory phase, and only small fraction of the above mentioned papers fully target
nano-crossbar arrays. Mostly, conventional PLA based architectures are used. Addi-
tionally, as for all emerging technologies, nano-crossbar arrays have very limited field
data that is needed for accurate modeling of transient faults.

1.3. Variation Tolerance in Nano-Crossbar Arrays
Considering that similar techniques are used in fault and variance tolerance, it is
worth mentioning studies considering variations in crosspoint delay values for perfor-
mance optimization of nano-crossbar arrays. As an earlier example, in [Gojman and
DeHon 2009] authors used fan-out matching to minimize the path delays and extrap-
olate delay values from [Committee et al. 2008]. In [Ghavami et al. 2010] and [Zamani
et al. 2013], the authors focus on minimizing the maximum variation of the overall

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 O. Tunali and M. Altun

Table II. Key Papers for Fault Tolerance in Nano-crossbar Arrays

Contribution of Papers
Fault tolerance of PLA’s by reconfiguration [Demjanenko and Upadhyaya 1990]

Fault tolerance with configurable custom computing hardware - Teremac [Heath et al. 1998]

Test methodology to determine defect locations in nano-crossbars [Mishra and Goldstein 2004]

Logic with CMOS-like nano-crossbars [Snider et al. 2004]

Defect-aware logic mapping with graph monomorphism [Hogg and Snider 2004]

Defect-aware logic mapping with greedy matching [Naeimi and DeHon 2004]

Defect-unaware sub-array search methodology [Tahoori 2006]

Built-in nanoscale error correcting for transient faults [Moritz et al. 2007]

Transient fault tolerance for nano-crossbars: possibilities and challenges [Rao et al. 2007]

Nano-crossbar specific fault modeling [Gil et al. 2008]

Defect-aware logic mapping with memetic algorithm [Yuan et al. 2014]

Defect-aware logic mapping with matrix sorting and backtracking [Tunali and Altun 2017]

crossbar. A bipartite graph and integer linear programming models are used respec-
tively. In [Tunc and Tahoori 2010] and [Tahoori 2010], two objectives are employed
as minimizing the maximum delay and minimizing the output variations. As an al-
gorithmic aspect, they use a simulated annealing approach. In [Yang et al. 2011], the
problem is formulated as a multiojbective optimization problem and an evolutionary
algorithm is utilized. In [Zhong et al. 2016], a hybrid evolutionary algorithm is used
and the problem is formulated as a bilevel multiobjective optimization.

1.4. Overview and Organization
A selection of key fault-tolerance studies is given in Table II. We determine these pa-
pers in terms of their novel contribution to the state-of-the-art. Since configuration
is the main power of fault tolerance in nano-crossbars, the list starts with some early
efforts exploiting configurability for tolerance (not necessarily for nano-crossbars). Fol-
lowing studies in the list show relatively recent trends and developments specifically
for nano-crossbars. Moreover, we add a concise life cycle and fault tolerance steps of a
nano-crossbar in Figure 2. This high-level integration picture demonstrates when cer-
tain fault tolerance mechanisms come into the picture. The step “function and crossbar
models” in the figure correspond to the algorithms’ individual problem formalization,
so it is approach dependent. The step “connectivity checks between crossbars/planes”
is performed after achieving configuration for each nano-crossbar to form a fully func-
tional architecture. Fault tolerance algorithms that constitute the considerable portion
of this survey are used in post-fabrication configuration and also employed during re-
configuration to tolerate in-field faults. Another aspect of in-field fault tolerance is
hardware redundancy based on fault masking.

The rest of the paper is organized as follows. In Section 2, we present fault charac-
teristics and models. In Section 3, we demonstrate configuration of nano-crossbars for
logic mapping. In the following two sections, we focus on permanent faults. In Sections
4 and 5, we explain defect-unaware and defect-aware logic mapping algorithms, re-
spectively and we present experimental results of the algorithms by comparing yield,
success rate, and runtime parameters. In Section 6, we examine fault tolerance tech-
niques for transient faults. In Section 7, we discuss future directions of the methods
with upcoming challenges.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:7

Fault Tolerance Scheme

Nano-crossbar array

fabrication

F
a

b
ri

c
a

ti
o

n
P

o
s

t-
fa

b
ri

c
a

ti
o

n
c

o
n

fi
g

u
ra

ti
o

n

(d
e
fe

c
ts

)

In
fi

e
ld

(t
ra

n
s
ie

n
t

fa
u

lt
s
)

Test and diagnosis

Defect-aware

mapping

Connectivity checks

between crossbars/planes

Defect-unaware

mapping

Reconfiguration

Functionality

Defect map

Function and

crossbar models

Configuration

(logic mapping)

Online test

Size

Logic function

Redundancy

Area yield

(generally 1.5 larger

size crossbar)

Fault masking

and reconfiguration

Fig. 2. Outline of fault tolerance scheme.

2. FAULT CHARACTERISTICS
In this section, we first define fault models of nano-crossbars in logic level. Then, we
elaborate on the distinction between permanent and transient faults with an overview
of literature tendencies towards the adoption of different fault models. As a note, we
enunciate that there is no consistent modeling preference of faults in the literature.
Most of the works only consider certain type of crosspoint faults. In experimental re-
sults, we explore the effects of using different fault models in depth.

2.1. Fault Models
We use fault as a generic term for problems that might cause en error in computing.
Faults in nano-crossbars can be considered under two categories: 1) Faults affecting
the configuration of crosspoints that cause phase shifts between activated and deac-
tivated phases; and 2) Faults affecting the functionality of electrical components in
crosspoints that causes phase shifts between ON and OFF states of the components.
In the first category, configuring a crosspoint switch includes activating and deacti-
vating processes. When a crosspoint is activated, it means that there is an electrical
component at the crosspoint and its functionality is intact, so phase shifts between ON

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 O. Tunali and M. Altun

: Stuck-at deactivated : Stuck-at activated : Configurable : Faulty

Configuration Level Faults

Input Lines
O

u
tp

u
t

L
in

e
s

Input Lines

O
u

tp
u

t
L

in
e

s v

v

Diode

FET

(a)

(b)

Input Lines

O
u

tp
u

t
L

in
e

s

Input Lines

O
u

tp
u

t
L

in
e

s

Fig. 3. Configuration level faults: (a) for diode based, and (b) for FET based switching crosspoints.

and OFF states is possible. When a crosspoint is deactivated, it means as if no compo-
nent is present at the crosspoint. Configuration level faults are defined as follows:

— Stuck-at deactivated fault makes the corresponding crosspoint switch always deac-
tivated that can not be used as a functional component any more; and

— Stuck-at activated fault makes the corresponding crosspoint switch always activated,
so there is a functional component.

Representation of configuration level faults and their effects are shown in Figure
3. As can be seen from the figure, this type of faults only affect the corresponding
crosspoint itself. In addition to the faults directly affecting crosspoint switches, broken
and bridging faults might occur on input and output lines. They can also be modeled
using crosspoint faults such that all crosspoints of broken or adjacent lines can be
considered stuck-at deactivated.

For the second category of faults, we consider the functionality of electrical compo-
nents in crosspoints. This type of faults are defined as follows:

— Stuck-at OFF fault makes the corresponding crosspoint component not capable of
conducting current, so the component ideally has an infinite resistance; and

— Stuck-at ON fault makes the corresponding crosspoint component constantly conduct
current, so the component ideally has a zero resistance.

These types of faults affect the other switches of the crossbar according to the tech-
nology preference of either having diode based or FET based crosspoints. For a diode
based crosspoint, a stuck-at OFF fault means no connection between the two terminals

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:9

: Stuck-at OFF : Stuck-at ON : Effected : Faulty

Functionality Level Faults

Input Lines
O

u
tp

u
t

L
in

e
s

Input Lines

O
u

tp
u

t
L

in
e

s v

v

Diode

FET

(a)

(b)

Input Lines

O
u

tp
u

t
L

in
e

s

Input Lines

O
u

tp
u

t
L

in
e

s

Fig. 4. Functionality level faults: (a) for diode based, and (b) for FET based switching crosspoints.

of the diode, placed in the crossed input and output lines, so it only affects the faulty
crosspoint. On the other hand, a stuck-at ON fault means a constant connection be-
tween the terminals, so all crosspoints in the corresponding output line are discarded.

For a FET based crosspoint, a stuck-at OFF fault breaks the connection between the
two terminals, both placed in the output line, so all crosspoints in the corresponding
output line are discarded. On the other hand, a stuck-at ON fault means a constant
connection between the terminals, so it only affects the corresponding crosspoint. Rep-
resentation of faults for diode and FET based arrays are shown in Figure 4 (a) and (b),
respectively.

2.2. Permanent and Transient Faults
Permanent and transient fault concepts are more related to the life cycle of a nano-
crossbar than the physical characteristics of faults.

— Permanent faults or defects occur during fabrication process due to physical problems
or variations; and

— Transient faults occur in field during the operation of a product.

Considering the two categories of faults presented in the previous subsection related
to configuration of crosspoints and functionality of components, we can say that both
categories are applicable for permanent and transient faults. We can also claim that
permanent faults mostly comprise of configuration level faults since it is unlikely to
see a case after fabrication that a crosspoint can be perfectly activated/deactivated,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 O. Tunali and M. Altun

but its electrical component is not properly operating. Therefore, faults related to the
functionality of components are more likely to be transient that is also supported by
the fact that degradation and aging phenomena of components show transient charac-
teristics.

3. LOGIC MAPPING PROBLEM
Nano-crossbar based architectures are generally composed of specific crossbars/planes
each of which implement a 2-level logic such as AND-OR as illustrated in [Dehon
2005], [Strukov and Likharev 2005], [Strukov and Likharev 2007], [Moritz et al. 2007],
and [Wang et al. 2007]. Therefore realization of a target logic function whether 2-
level or multi-level is closely related to the architecture. However, if we focus on a
single plane and use an abstraction (independent of plane character), logic mapping
process (whether 2-level or multi-level) gradually can be applied to every connect-
ing/succeeding planes to accomplish the desired result. This is a common practice in
the literature with using AND planes for benchmark simulations. The reason of using
AND planes is that they are generally much larger than OR planes; using a recon-
figurability feature, a single line/wire as an OR plane is even sufficient to have every
output at a time. Note that with defect-free OR planes, one can make connections be-
tween planes without any constraint for the orderings of input and output lines. For
this purpose defect-unaware logic mapping techniques can be preferred. Logic map-
ping and connectivity checks of planes are previously illustrated in Figure 2 with an
integrated high-level view.

Logic mapping is the configuration of crosspoint switches of a nano-crossbar in order
to implement a given Boolean logic function given in sum-of-products form such as f =
P1+, ...,+Pk. The main goal is finding a valid mapping, namely a correct assignment
of literals and products of the function to inputs and outputs of a given crossbar. Input
and output assignments can be represented with an input array I = [I1, ..., In] IA
and and output array O = [O1, ..., Om] OA, respectively. Having an m × n crossbar,
IA[j] shows the variable assigned to the jth input where 1 ≤ j ≤ n, and OA[i] shows
the product assigned to the ith output where 1 ≤ i ≤ m. To find a valid mapping,
configuration process of a crosspoint switch in the ith row and the jth column should be
as follows:

Conf(i, j) =

{
activate, if the variable IA[j] is present in the product OA[i],
deactivate, otherwise.

In case of having a fault-free crossbar, every assignment produces a valid mapping,
so the configuration process is simple and straightforward. Defect-unaware approaches
benefit from this feature by finding a defect-free sub-crossbar, so physical design is not
troubled with the locations of defects. Figure 5 (a) shows an example.

In case of having faults, it is not guaranteed that an assignment produces a valid
mapping. Figure 5 (b) shows an example. Configuration with the same input and out-
put arrays as used for a fault-free crossbar, produces a different logic function since
certain switches cannot be activated or deactivated. However, with using a defect-
aware method one can implement the given function with a valid assignment. Figure
5 (c) shows an example.

In the following two sections, we consider defect-unaware and defect-aware algo-
rithms targeting permanent faults or defects. In short, defect-unaware approaches aim
to find a defect-free sub-crossbar, so the follow-up assignment procedure is straightfor-
ward and trouble-free. Defect-aware approaches aim to find valid input and output
assignments using the full size crossbar by considering every defect in a crossbar.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:11

I1 I2 I3 I4 I5 I6

O1

O2

O3

O4

Given function

Logic Mapping Process

IA = [x1 x2 x3 x1 x2 x3]

OA = [P1 P2 P3 P4]

1. assignment and configuration

(defect-unaware)

Realized functions of assignments

1.

O1

O2

O3

O4

Defect-free crossbar

Defective crossbar 2. assignment and configuration

(defect-unaware)

x1 x2 x3 x1 x2 x3

f = x1 x2 + x2 x3 + x1 x3 + x1 x2 x3

f = x1 x2 + x2 x3 + x1 x3 + x1 x2 x3

3. assignment and configuration

(defect-aware)

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P4

P3

IA = [x1 x2 x3 x1 x2 x3]

OA = [P1 P2 P3 P4]

IA = [x2 x3 x1 x1 x2 x3]

OA = [P1 P2 P4 P3]

2. f = x1 x2 + x1 x2 x3 + x1 x3 x3 + x1 x3

3. f = x1 x2 + x2 x3 + x1 x3 + x1 x2 x3

1 = 3 ≠ 2

Results

I1 I2 I3 I4 I5 I6

x1 x2 x3 x1 x2 x3 x2 x3 x1 x1 x2 x3

(a)

(b) (c)

Fig. 5. Logic mapping process for (a) a defect-free crossbar corresponding to defect-unaware mapping, (b) a
defective crossbar with direct mapping, and (c) a defective crossbar with defect-aware mapping.

4. DEFECT-UNAWARE LOGIC MAPPING
Defect-unaware logic mapping methods search for a defect-free k×k sub-crossbar in an
n×n nano-crossbar using graph based algorithms. The main goal is to maximize yield
or (k/n)2. Since the obtained k × k sub-crossbar is defect-free, logic mapping process
is straightforward afterwards. Let’s first give the common concepts employed in the
algorithms.

4.1. Definitions
(1) Nano-crossbar has vertical lines as inputs and horizontal lines as outputs. There

is a configurable switch in every functional crosspoint. An example is shown in
Figure 6 (a).

(2) Bipartite graph representation has two disjoint node sets; no edge exists between
nodes in the same set. Elements of the node sets are represented by V and U show-
ing output and input lines, respectively. A configurable switch in a crosspoint is
shown with an edge connecting nodes from V and U . Connected nodes via edges
are called adjacent and a degree of a node is the number of edges connected to the
node. A stuck-at activated defect results in an erasure of the corresponding nodes
from V and U as well as all edges connected to these nodes. A stuck-at deacti-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 O. Tunali and M. Altun

I1 I2 I3 I4

O1

O2

O3

O4

Input Lines

O
u

tp
u

t
L

in
e

s

Stuck-at activated

No edge

O1

O3

I1

I2

I3

V U

Gc(V, U, Ec)

O4

(a) (b) (c)

O1

O2

O3

I1

I2

I3

I4

V U

G(V, U, E)

O4

Stuck-at deactivated

No node

Obtaining Bipartite Complement Graph

Fig. 6. Steps of obtaining a bipartite complement graph: (a) defective nano-crossbar, (b) bipartite graph
representation and modification according to defects, and (c) bipartite complement graph.

vated defect results in an erasure of the corresponding edge. Figure 6 (b) shows a
modified graph model in case of defects.

(3) Bipartite complement graph is the complement of a graph with keeping all of the
nodes with an addition of all edges that do not exist in the original graph. An
example is shown in Figure 6 (c).

(4) Independent set consists of nodes such that no node pair in the set has an edge
connecting the nodes.

(5) Biclique is a subgraph of a bipartite graph such that every node has the maximum
possible degree. Note that a defect-free sub-crossbar can be denoted with a biclique.

4.2. Algorithms
Finding a k×k sub-crossbar is equivalent to determining a balanced maximum biclique
in a bipartite graph. Condition of being fully balanced ensures that dimensions (k
inputs and k outputs) are equal to each other. The problem of obtaining a maximum
biclique in a bipartite graph is shown to be an NP-hard in [Garey and Johnson 2002].
For this reason, heuristic algorithms are proposed to find sub-optimal solutions under
reasonable time constraints.

The proposed algorithms formulate the problem as finding the maximum indepen-
dent set in the complementary graph. Since only stuck-at deactivated defects in cross-
points are denoted with edges, degree of a node in the complementary bipartite graph
is equal to the number of defects present in the corresponding line. If a node has a
degree of zero, no edges with other nodes, it can be included to the independent node
set immediately. Proposed algorithms focus on deciding which node to remove for effi-
ciently obtaining zero-degree nodes. Outline of the algorithms in a modular composi-
tion is given in Algorithm 1.

Formulation of the problem as finding the maximum independent set in a comple-
mentary bipartite graph is first proposed by Tahoori in [Tahoori 2006]. It is observed
that by removing nodes having maximum degrees, it is possible to discard lines hav-
ing maximum number of defects. After the removal, degrees of the remaining nodes
are updated and searching process is initialized again. Iterations are performed until
either V or U becomes empty. A pseudocode of the algorithm is given in Heuristic 1.
As can be seen from the code, the algorithm flips between V and U in order to assure
a balanced condition by using the flag value. This way, a sub-crossbar is guaranteed

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:13

Algorithm 1 Defect-unaware Outline
1: Obtain Gc(V, U,Ec)|Ec| = n2 − |E| . Bipartite complement graph
2: Ub ← φ, V b ← φ, flag ← TRUE
3: repeat
4: Ub ← Ub∪{u|u ∈ U, d(u) = 0}, U ← U − Ub

5: V b ← V b∪{v|u ∈ U, d(v) = 0}, V ← V − V b

6:
7: HEURISTIC(t) . Preferred heuristic is called.
8:
9: until U = φ or V = φ

10: return UbxV b as the maximum biclique

to be balanced by achieving a difference of 1 between its dimensions: |U b| − |V b| = ±1.
Nevertheless, regarding the number of variables and products of given logic functions
to be realized, restrictions can be relaxed.

The same problem formalization is also used in [Al-Yamani et al. 2007]. As a first
step, the algorithm checks the nodes having minimum degrees. In the second step, the
adjacent nodes to the checked ones are determined as candidates. As a final step, the
candidates adjacent to most checked nodes are removed. The removal process increases
the probability of obtaining zero-degree nodes. The pseudocode is given in Heuristic 2.
This algorithm produces better results in terms of yield compared to the first algorithm
in Heuristic 1. However, finding adjacent nodes increases the computational load of the
algorithm.

Fundamentally using the Yamani’s approach, Yuan proposes two algorithms. In the
first one, the node with the minimum degree is checked and the adjacent nodes are
determined as candidates. At the end, the one with the maximum degree is chosen

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 O. Tunali and M. Altun

O1

O2

O3

I1

I2

I3

I4

V U

(a) (b)

1. Heuristic 2. Heuristic 3. Heuristic 4. Heuristic

Condition Example Condition Example Condition Example Condition Example

Checked

node

Max.

degree

node

O1

Min. degree

nodes
O2,O3

Min. degree

node
O2

Min. degree

node
O2

Candidates

The

same

node
O1

Adjacent

nodes

I2, I3, I4 Adjacent

nodes

I2, I3 Adjacent

nodes
I2, I3

Removed

node

The

same

node

O1

Node

adjacent to

most checked

nodes

I2
Max. degree

node
I2

All adjacent

nodes

I2, I3

Heuristics Node Removal Table

Gc(V, U, Ec)

Fig. 7. Node removal processes for 4 different heuristic algorithms: an example of a bipartite complement
graph in (a) followed up by the removal process in (b).

to be removed [Yuan and Li 2011]. The pseudocode is given in Heuristic 3. In the
second study, analyzing the major loop iterations, it is concluded that removing all
of the adjacent nodes determined as candidates cuts down considerable number of
iterations, decreases the runtime, and improves the yield marginally [Yuan and Li
2014]. The pseudocode is given in Heuristic 4. The only disadvantage of the approach
is that balance condition is not guaranteed for the resulted biclique. In simulation
results, they show that |U b| − |V b| ≤ ±3. Summary of all four heuristics and their node
removal preferences are shown in Figure 7.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:15

4.3. Evaluation of Algorithms
The presented algorithms directly use a graph representation of a defective nano-
crossbar as an input. They do not deal with defect types and their representations
in graphs. Indeed, one can directly find a graph representation of a crossbar by eras-
ing edges for stuck-at deactivated defects and nodes for stuck-at activated defects as
previously explained in Section 4.1.

A real concern of defect-unaware methods is their considerably low yield or (k/n)2,
especially for high defect rates. When n = 250 and the fault rate is 15% that is a
reasonable value for nano arrays [Chen et al. 2003], the best algorithm finds k values
as high as 30. It means that only 1% of the crossbar can be used. This phenomena
undermines the basic attraction of nano-crossbars offering superior density features.

Another concern is that all of the mentioned papers study only stuck-at deactivated
defects except for [Tahoori 2006]. Tahoori shows that in case of having stuck-at acti-
vated defects that results in removal of all corresponding nodes, yield is impractically
low.

All of the examined heuristic algorithms have polynomial runtime complexities. As
long as crossbar size is under 1000× 1000 and defect rates smaller than 15%, they run
in a micro second domain that is quite satisfactory. Another interesting observation
is that, the algorithms are immune to the differentiation of fault rates. In the next
subsection, we conduct detailed simulations regarding their runtime and yield.

As a final note, defect-unaware methods in principle try to solve the problem of
finding the maximum biclique in a bipartite graph. For this reason, similar problem
formulations used in different fields such as those proposed in [Mubayi and Turán
2010] and [Yuan et al. 2015] can be directly applied to the defect-unaware methods
especially for the improvement of yield.

4.4. Simulation Results of Algorithms
In this section, we present experimental results of the examined defect-unaware al-
gorithms. We generate defective nano-crossbars with assigning an independent defect
probability/rate to each crosspoint that shows a uniform distribution. All defects are
modeled as configuration level defects either stuck-at activated or stuck-at deactivated
that is the common tendency in the literature. Monte Carlo simulations are performed
for assessment with a sample size of 200. We observe that fluctuating of parameter
values stabilize nearly after this threshold value. All algorithms are implemented in
MATLABTM. All experiments run on a 3.30GHz Intel Core i5 CPU (only single core
used) with 4GB memory.

In order to evaluate the performance of the algorithms, two different parameters are
used: runtime and area yield. Area yield is the ratio of the defect-free sub-crossbar size
to the initial defective crossbar size. In simulations, two defect settings are used to
evaluate the four proposed heuristics. For the first setting, we only consider stuck-at
deactivated types with a corresponding defect rate of PD having values of 5%, 10%,
and 15%. In the second setting, stuck-at activated defects are also included with a
corresponding defect rate PA = 1% with PD = 10%. As a reminder, we define yield as
(k/n)2 with respect to k2 being the size of a defect-free sub-crossbar and n2 being the
size of an initial defective crossbar.

Results of the first setting are given in Table III. Here, we select crossbar sizes up
to 200 × 200 after which yield values become impratically low. The table shows that
area yield values differ at most 6% and Heuristic 4 is the most efficient one in terms
of runtime. However, yield values are still inadequate that kills the main advantage of
using nano-crossbars having high area density. In the best case scenario, only 33% of
a nano-crossbar can be utilized and it significantly decreases for larger crossbar sizes.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 O. Tunali and M. Altun

Table III. Runtime and Area Yield of Defect-unaware Algorithms with Stuck-at Deactivated Defects.

Initial
Size

Defect
Rate

Tahoori, 2006 Yamani, 2007 Yuan, 2011 Yuan, 2014
Heuristic 1 Heuristic 2 Heuristic 3 Heuristic 4

Yield Run.(ms) Yield Run.(ms) Yield Run.(ms) Yield Run.(ms)

50 x 50
5% 33% 2 27% 2 27% 2 27% 2
10% 12% 2 14% 3 16% 2 14% 1
15% 9% 7 7% 3 7 % 2 10% 1

100 x 100
5% 16% 3 16% 6 16% 5 17% 3
10% 6% 4 8% 7 8% 5 7% 1
15% 3% 4 4% 9 4 % 6 4% 2

150 x 150
5% 9% 6 11% 10 10% 5 11% 8
10% 4% 6 4% 10 4% 8 4% 6
15% 1% 20 2% 10 3 % 8 2% 5

200 x 200
5% 6% 6 8% 10 7% 10 8% 10
10% 3% 9 3% 10 3% 10 3% 9
15% 1% 9 1% 10 1 % 10 1% 8

0%

5%

10%

15%

20%

25%

25 x25 50 x 50 75 x75 100 x 100 125 x125 150 x 150 175 x 175

Y
ie

ld

Crossbar size

Yield Values of Heuristics; PD = 10% and PA = 1%

Tahoori, 2006

Yamani, 2007

Yuan, 2011

Yuan, 2014

Fig. 8. Area yield results of defect-unaware algorithms; PD = 10% and PA = 1%.

Results of the second setting are given in Figure 8. We see that defect-unaware
methods is very vulnerable to stuck-at activated defects that cause eliminating both
input and output lines as we previously explain in Section 4. Although we select a
relatively low value of 1% for PA, area yield values are not satisfactorily. Due to the
very low yield values, we pursue no other experiments regarding stuck-at activated
defects higher than 1%.

Table IV summarizes the general features of the algorithms by using four levels:
poor, moderate, good, and excellent. Defect-unaware algorithms produce poor area
yield results. Also, stuck-at activated defects severely decrease the already very low
yield values. Their runtime results are satisfactory, but it is not not generally accept-
able to discard all other features for a straightforward mapping process. Obviously,
this inference is obtained by considering the existing methods; further increase of the
yield would clearly make defect-unaware approaches much more attractive.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:17

Table IV. Cheatsheet of Defect-unaware Algorithms

Author Algorithm Features

Multiple-type Defects Area Yield Runtime Area Scalability
Tahoori, 2006 Poor Poor Good Good
Yamani, 2007 Poor Poor Moderate Good

Yuan, 2011 Poor Poor Moderate Good
Yuan, 2014 Poor Moderate Excellent Excellent

Table V. Timeline of Defect-aware Logic Mapping Methodologies

Date Author Contribution
2004 Naemi Graph based greedy matching [Naeimi and DeHon 2004]
2004 Hogg Graph monomorphism [Hogg and Snider 2004]
2006 Rao Graph embedding [Rao et al. 2006]
2008 Yellabalase Clustered Defects [Yellambalase and Choi 2008]
2008 Polia Hardening techniques [Polian and Rao 2008]
2009 Su Runtime analysis of logic mapping [Su and Rao 2009]
2009 Simsir Partial graph constructing [Simsir et al. 2009]
2009 Zheng Logic mapping with satisfiability [Zheng and Huang 2009]
2011 Goren Graph canonization and radix sorting [Gören et al. 2011]
2011 Yang Integer linear programming [Yang and Datta 2011]
2011 Su Logic morphing [Su and Rao 2011]
2014 Yuan Graph based fitness approximation [Yuan et al. 2014]
2014 Su Logic morphing and hardening [Su and Rao 2014]
2017 Tunali Matrix based greedy backtracking [Tunali and Altun 2017]

5. DEFECT-AWARE LOGIC MAPPING
Defect-aware approaches employ defects present in a nano-crossbar during the con-
figuration process to map a given logic function. It is indicated that mapping a logic
function on a defective nano-crossbar array is an NP-complete problem [Shrestha et al.
2009]. The problem is directly equivalent to finding a subgraph isomorphism between
graph representations of a logic function and a nano-crossbar. However, in formaliza-
tion of the problem, a variety of different approaches are adopted to fasten the process,
especially for high defect rates. As a common practice, maximum bipartite matching
and graph based heuristics are used to lighten the computational load [Naeimi and
DeHon 2004], [Rao et al. 2009], [Simsir et al. 2009], and [Yuan et al. 2014]. A differ-
ent approach using matrix representations of a given logic function and a defective
nano-crossbar is used with row by row matching [Gören et al. 2011] and [Tunali and
Altun 2017]. Another method is integer linear programming with transforming defects
as constraints [Yang and Datta 2011] and [Zamani et al. 2013]. A comprehensive and
chronological list of the main papers and their contributions to the defect tolerant logic
mapping problem is shown in Table V.

Concerning the different types of defects, we see an overwhelming tendency in the
literature with only considering stuck-at deactivated types (different names used in
the literature are non-programmable, stuck-at 0, stuck-open) [Naeimi and DeHon
2004], [DeHon and Naeimi 2005], [Rao et al. 2006], [Yellambalase and Choi 2008],
[Simsir et al. 2009], [Zamani et al. 2013], [Yuan et al. 2014], and [Tunali and Altun
2017]. The only exceptions are [Zheng and Huang 2009], [Gören et al. 2011], and [Su
and Rao 2014] that analyze the occurrence of multiple-type defects. As follows, we
separately explain the main approaches in subsections followed by their evaluations.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 O. Tunali and M. Altun

(1) Given function

Bipartite Graph Construction

I1 I2 I3 I4 I5 I6

O1

O2

O3

O4

O1

O2

O3

O4

x1 x2 x3 x1 x2 x3

f = x1 x2 + x2 x3 + x1 x3 + x1 x2 x3

(2) Input assignment and finding

which product can be matched to

which output

P1, P2, P3, P4

P1, P3

P4

P1, P2, P3

O1

O2

O3

O4

P OG(P, O, E)

(3) Constructing the graph

P1

P2

P3

P4

(a) (b) (c)

Fig. 9. Steps of bipartite graph construction: (a) a given logic function and a crossbar, (b) an input assign-
ment and finding which product can be mapped to which output, and (c) constructing the graph.

Algorithm 2 Naeimi, 2004
1: Sort Pi ’s in decreasing order regarding fan-in. . Fan-in is # of variables in a product
2: while P 6= ∅ do
3: Choose the first Pi

4: while Pi is not matched and O has non-visited Oi ’s do
5: Choose a random Oi ∈ O
6: if valid mapping exist then
7: mark (Pi, Oi) matched
8: remove Pi from P and Oi from O
9: else

10: set Oi visited by Pi

11: end if
12: end while
13: end while

5.1. Maximum Bipartite Matching
In a defective nano-crossbar, arbitrary assignment of products of the given function
to the crossbar outputs might result in an error as previously visualized in Figure 5.
To determine the erroneous cases, one can use a bipartite graph having product (P)
and output (O) nodes. If there is an edge between a product and an output, then the
product can be mapped to the output. Thus, all possible mapping configurations can be
represented by edges. An example is given in Figure 9. After the graph construction,
finding a maximum or perfect matching that corresponds to a set of edges such that
every node is incident to exactly one edge, would yield a valid mapping. For this pur-
pose, exact algorithms can be used including Ford-Fulkerson maximum flow network
[Ford Jr and Fulkerson 1955] and Hopcroft-Karp algorithm [Hopcroft and Karp 1973].
However, constructing a bipartite graph is a costly process especially for high defect
rates seen in nano-crossbars, so certain heuristics are proposed.

Naeimi proposes a greedy heuristic algorithm without constructing a bipartite
graph; instead he uses expected values of node degrees [Naeimi and DeHon 2004].
Since a product with a high number of variables (fan-in) are harder to map, its node
degree would be smaller. The algorithm starts matching products in a decreasing order
of fan-in’s with choosing random output nodes. Naemi’s approach is fairly competent
in terms of scalability. A pseudocode of the algorithm is given in Algorithm 2.

Simsir also uses a heuristic algorithm with partially constructing the bipartite graph
[Simsir et al. 2009]. Firstly, variables from most common to least common (fan-out val-
ues) are assigned to least defective to most defective input lines, respectively. This
process is named as pin assignment. Secondly, a distinct edge is found for every prod-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:19

uct node and then an exact algorithm is performed to find a maximum matching. In
case no matching is found, an extra edge is searched for product nodes of bipartite
graph and the exact algorithm is performed at the end. This process continues until a
valid matching is found or another pin assignment is tried in case of no matching. A
pseudocode of the algorithm is given in Algorithm 3.

Yuan proposes a memetic algorithm with fitness approximation [Yuan et al. 2014].
Unlike Simsir’s approach, an initial random input assignment is made and fitness of
the assignment is evaluated with an objective function f . Ford-Fulkerson’s maximum
flow method is mainly used for finding a maximum bipartite matching. Furthermore
while searching for a matching, a greedy reassignment is performed by changing the
input assignment for better fitness. Greediness factor (λ) of the method determines the
number of input assignments to be changed. In addition, for every 10 trials (chosen as
an exact evaluation gap ∆ in the paper), an approximate matching algorithm is used
for the first 9 and an exact matching algorithm is used just for the last one that is
very similar to Naeimi’s greedy method. A pseudocode of the algorithm is given in
Algorithm 4.

5.2. Matrix Matching
A logic function and a defective nano-crossbar can be both denoted with matrices sim-
ilar to incident matrices of graphs. Figure 10 (a) and (b) respectively show a function

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 O. Tunali and M. Altun

+1 +1 −1 −1 −1 −1
−1 +1 +1 −1 −1 −1
+1 −1 +1 −1 −1 −1
−1 −1 −1 +1 +1 +1

+1 : Variable present

- 1 : Otherwise

0 +0 +0 −0 −0 −0
+1 +0 +0 +0 −0 +0
0 −1 +0 −0 −0 +1
0 −0 +0 +0 −1 +0

(a) (b)

I1 I2 I3 I4 I5 I6

O1

O2

O3

O4

+1 : Stuck-at activated defect

0 : Configurable switch

- 1 : Stuck-at deactivated defect

Function Matrix (FM) Crossbar Matrix (CM)

FM CM Matching

+1 +1 Yes

+1 0 Yes

-1 0 Yes

-1 -1 Yes

+1 -1 No

-1 +1 No

Compatibility Table

(c)

f = x1 x2 + x2 x3 + x1 x3 + x1 x2 x3

x1 x2 x3 x1 x2 x3

P1

P2

P3

P4

Matrix Representation

Fig. 10. Matrix representations of (a) logic function and (b) defective nano-crossbar, and (c) compatibility
table of elements.

matrix (FM) and a crossbar matrix (CM) of the logic function and the defective nano-
crossbar previously used in Figure 9. If we define which elements of logic and cross-
bar matrices can be matched, then it is possible to decide a valid mapping between a
product and an output by checking corresponding rows. Figure 10 (c) demonstrates a
compatibility table for matching. The key idea behind matrix matching is to make two
matrices easily matchable by assigning proper elements for defects and variables. As
follows, we examine two studies.

In the first study, Goren appoints k-neighbor values to all rows and columns individ-
ually [Gören et al. 2011]. After determining the values, rows and columns are sorted
in ascending order according to the k-neighbor values. A 1-neighbor value of a row or
a column of an FM (CM) is the number of +1’s (0’s and +1’s) in the corresponding row
or column. A 2-neighbor value of a row of an FM (CM) is the sum of 1-neighbor values
of the columns having intersections of +1’s (0’s and +1’s) with the row. Following the
same logic, in order to find a k-neighbor value of a row of an FM (CM), we add (k-1)-
neighbor values of the columns if they are +1 (0 or +1). The same procedure is applied
for columns. An example for finding 2-neighbor values is shown in Figure 11 (a).

After the initial operations, a two-dimensional sorting is applied to rows and
columns of matrices. Every row/column is regarded as a k-ary number (radix or base
equals to k) with most to least significant bits (MSB and LSB) being arranged from
left to right and from top to bottom. In Figure 11 (b) and (c), manipulation of the FM
and CM is shown according to the radix values. In order to sort rows and columns,
radix sort algorithm is used in ascending order. Starting with the rows, radix sort be-
gins with the LSB and sorts the rows and moves to the next bit (next column in our
context) until it reaches the MSB. The same process is applied to the columns as well.
This interleaving sorting continues till a stable sort is obtained. Important point is
that, since an FM and a CM has two and three different elements, respectively, radix
being 2 and 3 is applied.

After all of these sorting processes are finalized, the matrices are matched row by
row using the element compatibility as previously given in Figure 10 (c). The pseu-
docode is given in Algorithm 5.

In the second study, Tunali first sorts matrix columns according to the number
of compatible elements and rows with placing most defective rows at the top of the
crossbar matrix [Tunali and Altun 2017]. Then a greedy row by row matching using

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:21

+1 +1 +1 −1 −1 −1
−1 −1 −1 +1 +1 −1
−1 −1 −1 −1 +1 +1
−1 −1 −1 +1 −1 +1

−1 +0 +0 −0 −0 +1
+0 −1 +0 +0 −0 +0
+0 −0 +0 −0 −0 +0
+0 −0 +1 +0 −0 +0

Function Matrix (FM)

Crossbar Matrix (CM)

+1 +1 +1 −0 −0 −0
−0 +0 +0 +1 +1 −0
+0 −0 +0 −0 +1 +1
−0 −0 −0 +1 +0 +1

+0 +1 +1 +1 +1 +1
+1 +0 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1

MSB

LSB

LSB

Radix = 2

[-1 +1] [0 +1]

[-1 0 +1] [0 +1 +1]

[-1 0 +1] [0 +1 +2]

Radix = 2

Radix = 3

(b)

(c)

Two-dimensional Sort with Radix Sort

MSB : Most significant bit

LSB : Least significant bit

2-Neighbor Values

+1 +1 −1 −1 −1 −1
−1 +1 +1 −1 −1 −1
+1 −1 +1 −1 −1 −1
−1 −1 −1 +1 +1 +1

Function Matrix (FM)

(a)

Crossbar Matrix (CM)

(2,4)

(2,4)

(2,4)

(3,3)

(2,4) (2,4) (2,4) (1,3) (1,3) (1,3)

(6,22)

(6,22)

(5,19)

(5,19)

(4,22) (3,17) (4,22) (4,22) (3,17) (4,22)

+0 +0 +0 −0 −0 −0
+1 +0 +0 +0 −0 +0
+0 −1 +0 −0 −0 +1
+0 −0 +0 +0 −1 +0

Counted element for 1-Neighbor : +1 Counted elements for 1-Neighbor: 0 and +1

+0 +1 +1 +1 +1 +2
+1 +0 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1
+1 +1 +2 +1 +1 +1

Fig. 11. Two dimensional sort with radix sort: (a) k-neighbor values of function and crossbar matrices, (b)
function matrix with radix = 2 values, and (c) crossbar matrix with radix = 2 and radix = 3 values.

Algorithm 5 Goren, 2011
1: FM = KNS(FM) . K-neighbor sort
2: CM = KNS(CM)
3: FMcanon1 = 2DSradix2(FM) . Two dimensional sort with radix sort
4: CMcanon2 = 2DSradix2(CM)
5: CMcanon3 = 2DSradix3(CM) . Radix = 3 since CM has 3 different elements
6: CMcanon2.5 = 2DSradix2.5(CM) . First radix =2 and then radix = 3 sort is applied
7: Return Best()
8: RowMatch(FMcanon1, CMcanon2)
9: RowMatch(FMcanon1, CMcanon3)

10: RowMatch(FMcanon1, CMcanon2.5)

Hadamard multiplication is applied with backtracking excluding previously matched
rows. Since most defective rows are at the top, harder matchings are eliminated in the
beginning of the process. If no matching is found for a row even with backtracking,
column permutation is altered and row by row matching is initialized again. It should
be noted that, greedy row by row matching discard the overhead of the bipartite graph
construction. The pseudocode is given in Algorithm 6.

5.3. Graph Embedding
Rao proposes a recursive algorithm with heuristics to prune impossible mappings by
denoting both a given logic function and a crossbar with bipartite graphs [Rao et al.
2009]. The algorithm, called as Embed, explores solution space with using fanout,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 O. Tunali and M. Altun

fanout-fanout, and fanout-chain heuristics. Since a graph model is used, fanout of
the logic function is shown with node degrees; graphs G1(Nvar, Nprod, E1) for the func-
tion and G2(Nvert, Nhor, E2) for the crossbar are defined. The Embed algorithm finds a
matching between these graphs. Fanout heuristic compares the degrees of the nodes
to eliminate impossible mappings. Fanout-fanout heuristic checks the degrees of the
separate and connected nodes to discard impossible mappings. Fanout-chain heuristic
constructs all possible node-pair connections to conclude if there is a matching. Using
backtracking, nodes with insufficient degrees are eliminated. All these heuristics are
implemented in the 12. step of the pseudocode shown in Algorithm 7.

5.4. ILP Based Algorithms
Yang and Zamani propose to transform the logic mapping problem into a constrained
integer linear programming (ILP) problem in [Yang and Datta 2011] and [Zamani et al.
2013]. To obtain a valid mapping, constraint equations are derived. Parameters X and
Y respectively show the matching status of the rows corresponding to function prod-
uct and crossbar output, and columns corresponding to function variable and crossbar
input. If a product P1 can be matched with an output O1, then XP1 O1 becomes 1; oth-
erwise XP1 O1 = 0. The same condition is defined for Y for column matching.

In order to map a k1 x k2 function matrix to n1 x n2 crossbar matrix following con-
straints need to be met. If the ith row (product P) of a function matrix can be matched
with the jth row (output O) of a crossbar matrix, then Xi j = 1; otherwise Xi j = 0. For
a valid row mapping two conditions are imposed: 1) Each row in the function matrix
should be matched with only a single row in the crossbar matrix; and 2) Each row in
the crossbar matrix should be matched at most one row in the function matrix. The
following constraint (1) formalize these conditions. Same procedures are applied for
column matching as given in a constraint (2).

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:23

n1∑
j=1

Xi j = 1 for each i = 1, ..., k1

k1∑
i=1

Xi j ≤ 1 for each j = 1, ..., n1 (1)

n2∑
j′=1

Yi′ j′ = 1 for each i
′

= 1, ..., k2

k2∑
i′=1

Yi′ j′ ≤ 1 for each j
′

= 1, ..., n2 (2)

One more parameter is introduced Zi j,i′ j′ such that it takes the value of 1 if Xi j =

Yi′ j′ = 1; otherwise Z = 0. In order to find a valid mapping, every element of a function
matrix requires a valid mapping. The below constraint (3) ensures this condition.

k1∑
i=1

n1∑
j=1

k2∑
i′=1

n2∑
j′=1

Zi j,i′ j′ = i× j (3)

By using these 3 constraints, a valid mapping can be found. An important point is
that the proposed algorithm helps to prune solution space and decrease the computa-
tion time by finding impossible matchings corresponding to zero valued X ’s and Y ’s.

5.5. Evaluation of Algorithms
It is reasonable to assume that defect rates of nano-crossbars is high up to 20% that
dramatically elevate the computational load of the algorithms. Because of that, run-
time parameter of the algorithms can be considered as the major factor in evalua-
tions. Generally, ILP and graph embedding approaches yield poor runtime results.
Especially, recursive nature of the embedding algorithm causes impractical runtimes
for larger crossbar sizes. On the other hand, heuristic nature of maximum bipartite
matching approaches provides an upper hand in terms of runtime. Nevertheless con-
structing the bipartite graph is very time consuming. Also, if the graph is rather sparse
meaning that a few edges are present for possible matchings, exact algorithms need to
be applied that is also time consuming. As for matrix matching approaches, runtime
results are fairly satisfactory for even larger size logic functions. However, since match-
ing is advancing through one dimension (rows), increase of the column size drastically
worsens the success rate of the algorithms.

Considering the yield, maximum bipartite matching and matrix matching based al-
gorithms produce the best results. However, a prevalent trend in the literature is re-
alizing a logic function with a larger size crossbar, generally 1.5 times larger, than
the optimal size. Therefore, yield analysis is not conducted extensively for most of the
studies.

Another important point is the algorithms’ capability of handling multiple-type de-
fects. As we previously mention, only [Gören et al. 2011] fine-tunes the algorithm ac-
cording to defect types. The rest of the papers only consider stuck-at deactivated types,
so their proposed heuristics perform under this restriction. If multiple-type defects
were to be considered, bipartite graphs would be sparser (lower possibility of matching
between products and outputs) that makes harder to find a maximum bipartite match-
ing. This problem is also applicable for graph embedding and ILP based methods.

As a final note, defect-aware methods use a wide range of different problem formal-
izations not necessarily proposed for nano-crossbar arrays. Therefore studies related
to subgraph isomorphism [Cordella et al. 2004] and assignment problems [Chu and
Beasley 1997] can be directly applied to the defect-aware methods.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 O. Tunali and M. Altun

5.6. Simulation Results of Algorithms
The same system and simulation settings of defect-unaware methods are also used in
this section. Unlike defect-unaware algorithms for which the algorithms’ performance
are independent of the implemented functions, defect-aware algorithms give different
results for different functions. Therefore, we use standard benchmark circuits pre-
sented in [McElvain 1993].

In order to evaluate the performance of the algorithms, four different parameters
are used: success rate, runtime and its standard deviation, and area yield. Area yield
is defined as the ratio of the optimal size defect-free array to the defective crossbar
size adequate to realize a given benchmark function. For example, a logic function
with 4 variables and 10 products would require an optimal crossbar size of 10 × 8 (10
for outputs and 8 for inputs with 4 variables and 4 negated forms).

We also introduce a new parameter logic inclusion ration (IR) to help us to form a
more intuitive understanding of the mapping problem. The number of switching cross-
points adequate to realize a logic function is denoted by IR in the form of percentage.
For example, if the optimal crossbar size to implement a logic function is 10 × 10 and
IR = 40%, then it means that a logic function has a literal count of 40 and we need 40
switching crosspoints to implement the function. Since we can use stuck-at activated
defects as switching crosspoints, higher IR values ease the tolerance of stuck-at acti-
vated defects. Oppositely, lower IR values are preferred for the tolerance of stuck-at
deactivated defects. Therefore, it is possible to categorize the easiness of the tolerance
or mapping problem by considering the values of IR/PA and (1-IR)/PD for stuck-at ac-
tivated and deactivated defects, respectively. As an empirical measure, if these values
below three, then the sample space shrinks significantly that makes the problem very
hard. We state this threshold phenomena as an experimental tendency based on our
observations during the simulations of mapping trials rather than a strict compliance.
Different defect distributions such as clustered, or a different set of benchmark func-
tions might certainly produce a different threshold. Therefore, when we say easier or
harder to solve, reader should understand the categorization context in terms of our
experimental settings.

We use three defect settings. For the first and the second ones, benchmark functions
are respectively mapped to optimal (n/n = 100% yield) and 1.5 larger size ((n/(1.5 ×
n))2 ≈ 44% yield) crossbars with PD = 15%. For the third setting, 1.5 larger size
crossbars are used with PD = 10% and PA = 5%. We choose those three settings to
evaluate the algorithms’ response to stricter area conditions and multiple-type defects.

On the selection of the approaches previously given in the subsections of Section
5, we have excluded satisfiability, graph embedding and integer linear programming
based ones from simulations. The reason behind that, SAT approach is already shown
to be inferior to matrix model in [Gören et al. 2011]. In addition, graph embedding
algorithm adopts a recursive characteristic and is also demonstrated to be inferior to
maximum bipartite matching in [Yuan et al. 2014]. Finally, ILP needs to cope with very
large number of constraint equations that requires a drastic computational operations.

5.6.1. Graph Based Approaches. We start our experiments with optimal size crossbars
that result in %100 area yield, and PD = 15%. In terms of average runtime and its
deviation, Naemi’s algorithm always produces the best results. The other two meth-
ods sometimes show runtime deviations higher than average runtimes. Considering
the success rate, Yuan’s and Simsir’s algorithms are clearly superior. Random nature
of Naeimi’s approach causes an issue when the constraints prune the solution space
severely. However, Yuan’s and Simsir’s algorithms are not able find a valid mapping
for larger size examples, so scalability is an issue. Results are given in Table VI.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:25

Table VI. Runtime and Success Rate Comparison of Graph based Algorithms using Optimal Size Crossbars;
PD = 15%.

Benchmarks Naemi, 2004 Simsir, 2009 Yuan, 2014
Name Size IR Psucc Run.(ms) Std Psucc Run.(ms) Std Psucc Run.(ms) Std
5xp1 75× 14 28% 42% 3 1 100% 269 21 100% 17 2
inc 34× 14 40% 0% 3 1 56% 3262 1871 100% 109 166
clip 167× 18 29% 10% 12 3 100% 5934 618 100% 130 4

misex2 40× 29 12% 43% 2 0 100% 45 10 100% 9 3
9sym 87× 18 33% 0% 11 2 100% 7024 19236 100% 38 21
bw 65× 10 35% 5% 4 1 92% 11657 13159 100% 107 172

rd53 32× 10 42% 3% 2 1 84% 962 1612 100% 7 2
t481 481× 32 30% 0% 517 86 - - - - - -
alu4 1028× 28 27% 2% 235 34 - - - - - -

misex3 1848× 28 34% 0% 6758 760 - - - - - -
table3 645× 28 40% 0% 2348 187 - - - - - -
apex4 1732× 18 47% 0% 3674 415 - - - - - -
rd84 411× 16 50% 0% 673 60 - - - - - -

Table VII. Runtime and Success Rate Comparison of Graph based Algorithms using 1.5 Larger Size Cross-
bars; PD = 15%.

Benchmarks Naemi, 2004 Simsir, 2009 Yuan, 2014
Name Size IR Psucc Run.(ms) Std Psucc Run.(ms) Std Psucc Run.(ms) Std
5xp1 75× 14 28% 100% 3 1 100% 459 21 100% 27 1
inc 34× 14 40% 99% 1 0 100% 1191 1227 100% 8 4
clip 167× 18 29% 100% 12 1 100% 7934 440 100% 210 2

misex2 40× 29 12% 93% 2 0 100% 58 4 100% 7 0
9sym 87× 18 33% 100% 4 0 100% 656 30 100% 42 0
bw 65× 10 35% 100% 2 0 100% 3610 5511 100% 16 0

rd53 32× 10 42% 98% 1 0 100% 27 1 100% 7 3
t481 481× 32 30% 100% 58 5 - - - - - -
alu4 1028× 28 27% 100% 102 10 - - - - - -

misex3 1848× 28 34% 100% 304 21 - - - - - -
table3 645× 28 40% 96% 138 18 - - - - - -
apex4 1732× 18 47% 100% 25 21 - - - - - -
rd84 411× 16 50% 95% 46 6 - - - - - -

In our second experiment, we loosen the area restrictions and use 1.5 larger size
crossbars that results in %44 area yield. Here, Naemi’s algorithm is the clear win-
ner for all of the performance parameters. Only exception is that, Yuan’s approach
produces better success rates for the benchmarks ”inc” and ‘”misex2”. In addition, its
runtime deviation is relatively stabilized. Results are given in Table VII.

In our last experiment, once more we use 1.5 larger size crossbars with PD = 10%
and PA = 5%. Here, Naemi’s algorithm is again the clear winner for all of the perfor-
mance parameters. Only exception is that, Yuan’s approach is the only one being able
to find a valid mapping for the benchmark ”misex2”. Results are given in Table VIII.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 O. Tunali and M. Altun

Table VIII. Runtime and Success Rate Comparison of Graph based Algorithms using 1.5 Larger Size Cross-
bars; PD = 10% and PA = 5%.

Benchmarks Naemi, 2004 Simsir, 2009 Yuan, 2014
Name Size IR Psucc Run.(ms) Std Psucc Run.(ms) Std Psucc Run.(ms) Std
5xp1 75× 14 28% 99% 6 1 96% 13890 23540 100% 25 3
inc 34× 14 40% 77% 2 0 96% 709 1390 100% 4 0
clip 167× 18 29% 98% 14 3 - - - 100% 190 0

misex2 40× 29 12% 0% 18 3 0% 6570 1470 60% 6590 1200
9sym 87× 18 33% 98% 9 1 - - - 100% 42 2
bw 65× 10 35% 99% 3 0 100% 4350 11090 100% 16 0

rd53 32× 10 45% 100% 1 0 100% 94 250 100% 3 0
t481 481× 32 30% 0% 986 200 - - - - - -
alu4 1028× 28 27% 6% 550 150 - - - - - -

misex3 1848× 28 34% 99% 637 40 - - - - - -
table3 645× 28 40% 0% 1138 28 - - - - - -
apex4 1732× 18 47% 100% 251 23 - - - - - -
rd84 411× 16 50% 100% 37 3 - - - - - -

Table IX. Runtime and Success Rate Comparison of Matrix based Algorithms using
Optimal Size Crossbars; PD = 15%.

Benchmarks Goren, 2011 Tunali, 2017
Name Size IR Psucc Run.(ms) Std Psucc Run.(ms) Std
5xp1 75× 14 28% 100% 20 7 100% 0 0
inc 34× 14 40% 5% 280 60 98% 57 170
clip 167× 18 29% 100% 70 6 100% 1 0

misex2 40× 29 12% 4% 400 80 100% 1 1
9sym 87× 18 33% 74% 310 489 100% 1 3
bw 65× 10 35% 87% 90 210 100% 3 4

rd53 32× 10 45% 64% 78 98 100% 1 2
t481 481× 32 30% 0% 31240 2450 0% 67430 2570
alu4 1028× 28 27% - - - 100% 60 10

misex3 1848× 28 34% - - - - - -
table3 645× 28 40% - - - 0% 840 20
apex4 1732× 18 47% - - - 0% 1470 230
rd84 411× 16 50% - - - 0% 350 7

5.6.2. Matrix Based Approaches. Similar to graph based approaches, we start our ex-
periments with optimal size crossbars, and PD = 15%. Here, Tunali’s algorithm is the
clear winner in terms of the all parameters. However, it is not able to find a valid
mapping for larger size examples with an only exception of the benchmark ”alu4”.
Therefore scalability is still an important issue for matrix based algorithms. Results
are given in Table IX. In our last two experiments, Tunali’s approach also produces su-
perior results. It is clear that Goren’s approach is not scalable due mainly to its fairly
complicated sorting process. However, it should be noted that, Tunali’s success rate
for a harder case like ”misex2” is inferior to Yuan’s approach when stuck-at activated
defects are introduced to the problem. Memetic nature of Yuan’s approach fine tunes

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:27

Table X. Runtime and Success Rate Comparison of Matrix based Algorithms us-
ing 1.5 Larger Size Crossbars; PD = 15%.

Benchmarks Goren, 2011 Tunali, 2017
Name Size IR Psucc Run.(ms) Std Psucc Run.(ms) Std
5xp1 75× 14 28% 100% 37 2 100% 1 0
inc 34× 14 40% 100% 10 0 100% 0 0
clip 167× 18 29% 100% 154 4 100% 1 1

misex2 40× 29 12% 96% 50 151 100% 1 0
9sym 87× 18 33% 100% 40 2 100% 1 0
bw 65× 10 35% 100% 24 1 100% 1 0

rd53 32× 10 45% 100% 8 0 100% 1 0
t481 481× 32 30% 53% 16270 2910 100% 36 2
alu4 1028× 28 27% - - - 100% 19 1

misex3 1848× 28 34% - - - 100% 382 18
table3 645× 28 40% - - - 100% 107 8
apex4 1732× 18 47% - - - 100% 340 18
rd84 411× 16 50% - - - 100% 39 3

Table XI. Runtime and Success Rate Comparison of Matrix based Algorithms
using 1.5 Larger Size Crossbars; PD = 10% and PA = 5%.

Benchmarks Goren, 2011 Tunali, 2017
Name Size IR Psucc Run.(ms) Std Psucc Run.(ms) Std
5xp1 75× 14 28% 100% 34 5 100% 1 0
inc 34× 14 40% 97% 32 6 100% 0
clip 167× 18 29% 100% 126 4 100% 4 1

misex2 40× 29 12% 0% 760 3 28% 23 1
9sym 87× 18 33% 100% 35 2 100% 1 0
bw 65× 10 35% 100% 19 1 100% 1 0

rd53 32× 10 45% 100% 7 0 100% 1 0
t481 481× 32 30% 60% 12930 1820 100% 60 12
alu4 1028× 28 27% - - - 100% 70 4

misex3 1848× 28 34% - - - 100% 430 16
table3 645× 28 40% - - - 100% 130 17
apex4 1732× 18 47% - - - 100% 210 14
rd84 411× 16 50% - - - 100% 18 3

mapping process better than Tunali’s sorting approach. Results are given in Table X
and XI.

5.6.3. Comparisons of all Algorithms . In Table XII, general features of the algorithms
are evaluated by using four levels: poor, moderate, good, and excellent. Features of
satisfiability, ILP and graph embedding based algorithms are interpreted through the
comparison performed in the papers [Gören et al. 2011], [Zamani et al. 2013] and [Yuan
et al. 2014], respectively. Examining the results, we see that certain attributes need
to be considered before choosing a suitable method. When area yield is an important
factor, for easier cases Tunali’s approach and for harder cases Yuan’s approach is the

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 O. Tunali and M. Altun

Table XII. Cheatsheet of Defect-Aware Algorithms

Author Algorithm Features

Success Rate Multiple-type Defects Area Yield Runtime Scalability
Naemi, 2004 Good Good Poor Good Good
Zheng, 2009* Good Good Poor Poor Poor
Simsir, 2009 Good Moderate Moderate Poor Poor
Rao, 2009* Poor Poor Poor Poor Poor

Goren, 2011 Moderate Moderate Moderate Moderate Poor
Zamani, 2013* Poor Poor Poor Poor Poor

Yuan, 2014 Good Good Moderate Good Moderate
Tunali, 2017 Excellent Moderate Good Excellent Excellent

* cases are excluded from simulations and results are taken from referenced papers

best choice. When it is not an issue, Tunali’s approach produces better results consid-
ering the runtime values. When multiple-type defects are introduced, Naemi’s, Yuan’s,
and Tunali’s approach are fairly competent in terms of the success rate. Nevertheless
Tunali’s algorithm are superior considering the runtime. However, it is less equipped
for harder cases, so if runtime is not an issue, Yuan’s approach is more favorable. Note
that ”multiple-type defects” and ”area yield” features are not assigned with excellent
grade; the related research fields are open to further investigations with new methods.

6. TRANSIENT FAULT TOLERANCE
In the previous two sections, we have focused on permanent faults (defects) occurring
during the fabrication process which are deterministic in nature and known in ad-
vance. However, transient faults appear in field and as for all emerging technologies,
nano-crossbar arrays have very limited field data needed for accurate modeling of tran-
sient faults. Because of that, current literature is limited. Moreover, transient fault
tolerance schemes are closely related to the architecture, so certain major assump-
tions are necessary. Another point is that, even though the architecture in question is
assumed to be based on nano-crossbar arrays, investigative assumptions are based on
the existing PLA’s and their presumable responses to occurrence of faults.

In order to detect and correct errors due to transient faults, hardware redundant so-
lutions are proposed. Main methods are fault masking and reconfiguration with online
testing. Fault masking methods realize a logic function using more than one AND-OR
plane. In reconfiguration based approaches, first faults are detected with online test-
ing and then crossbar is reconfigured. In regard to diagnostic capabilities, a different
degree of integration is favored according to fault occurrence and granularity of access
to input and output lines. A generic scheme of transient fault tolerance preference is
shown in Figure 12. Hardware overhead is utilized as multiple use of AND and OR
planes in fault masking in (a) and online diagnostic with reconfiguration tools in (b).

Considering the two categories of faults previously explained in Section 2 related
to configuration of crosspoints and functionality of components, we can say that both
categories are applicable for transient faults. However, since faults related to the func-
tionality of components require field data for justification that is very limited, current
literature only adopts the configuration level faults classified as stuck-at activated and
stuck-at deactivated.

Stuck-at deactivated faults cause a missing device in AND and OR planes, so a vari-
able and a product is erased from the logic function, named as G and D, respectively.
While G type faults produce 0 −→ 1 error, D type faults produce 1 −→ 0 error. Stuck-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:29

Nano-crossbar array

Redundancies

Transient Fault Tolerance Schemes

AND OR
Fault masking

Online test

and

reconfiguration

(a) (b)

AND

Input Vector

OR

Output Vector

Pattern RAM

Pattern

RAM

P
ro

d
u
c
t V

e
c
to

r
Diagnosis for AND plane faults type G and S

Diagnosis for OR plane faults type D and A

AND
O

R

Voter(AND)

O

R
AND

AND AND
O

R

O

R

R
e
c
o
n
fig

u
ra

tio
n

Reconfiguration

fAND on AND plane

fAND on OR plane

fOR on OR and AND plane

Fig. 12. Transient fault tolerance schemes: (a) fault masking with multiple use of AND and OR planes, and
(b) online test with a reconfiguration mechanism.

Table XIII. Transient Fault Model used for Nano-crossbar Arrays

Type Naming Cause Effect Output Example
Stuck-at
deactivated

G (growth) missing device
in AND plane

missing
variable

0 −→ 1 F = A.B + C.D−→
B + C.D

Stuck-at
activated

S (shrink) extra device in
AND plane

extra
variable

1−→ 0 F = A.B + C.D −→
A.B.E + C.D

Stuck-at
deactivated

D (disappear) missing device
in OR plane

missing
product

1 −→ 0 F = A.B + C.D−→
C.D

Stuck-at
activated

A (appear) extra device in
OR plane

extra
product

0 −→ 1 F = A.B + C.D−→
A.B + C.D + E

at activated faults cause an extra device in AND and OR planes, so a variable and a
product is added to the logic function, named as S and A, respectively. While S type
faults produce 1 −→ 0 error, A type faults produce 0 −→ 1 error. Table XIII shows the
complete list of cause and effect of faults with a logic function example.

6.1. Fault Masking
Fault masking approach is first introduced in comparison with conventional methods
in [Rao et al. 2007], and detailed examination of the approach considering stuck-at
deactivated faults is given in [Rao et al. 2009]. In fault masking, two tautologies form
of a Boolean function as follows.̂fAND = f · f = f f̂OR = f + f = f (4)

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 O. Tunali and M. Altun

Table XIV. Hardware Overhead for the Fault Tolerant Schemes

Fault Masking
Scheme

Hardware Logic Level
Device Wire

Original DA +DO I + P + O 2
A-O 4DA + 2DO 2I + 2P + O 2

A-O-O 2DA + 2DO + 2O 2I + P + 3O 3
A-A-O-O 2DA + 2DO + 2P + 2O I + 3P + 3O 4
A-O-O-A 2DA + 4DO + 6O I + 2P + 7O 4

While the first tautology is for masking G and A type faults, S and D type faults
correspond to the second one. To determine the area overhead of a PLA structure in
terms of the used functional devices and connecting wires, we define the number of in-
puts/variables as I, the number of products as P, and the number outputs (implemented
functions) as O. Table XIV gives the formulations of the used area for the implemen-
tations. By analyzing the table and given logic functions, we can fine-tune our area
overhead. For example, a logic function with many products but a few outputs, using
A-O-O is more reasonable than using A-O. It should be noted that this systematic is
only for area optimization. For different performance parameters such as power and
delay, a much more detailed analysis and optimization techniques are needed that can
be considered as future work.

6.2. Online Testing and Reconfiguration
Constructed mainly on conventional fault detection and correction techniques, fault
tolerance schemes using testing and reconfiguration are proposed in [Rao et al. 2007],
[Garcia and Orailoglu 2008], and [Farazmand and Tahoori 2009].

In [Rao et al. 2007], a straightforward diagnostics technique is introduced with pat-
tern RAMs that hold the correct output values of the mapped logic function. Therefore
it is an easy task to determine erroneous results by checking input, product, and out-
put vectors. One RAM for each AND and OR plane is integrated to a nano-crossbar.
After locating the faults, reconfiguration process is assumed to be performed.

In [Garcia and Orailoglu 2008], a checkpoint-based fault tolerance offering reconfig-
urability is proposed. Online test is performed to a group of PLA blocks with choosing
two of them as surrogates. Every block is checked in a round-table manner and if no
fault is detected, a safe checkpoint is identified. In order to determine faults, row and
column based diagnostic test vectors are designed. Starting with row based diagnos-
tics, S type faults (previously explained in Table XIII) can be found by setting all of the
inputs or variables of the corresponding product to 1, and the rest of the inputs to 0
to make all of the products except the corresponding one being 0. In case of having a
1−→ 0 error, we can conclude that an S type fault occurs in the product. Since D type
faults show the same 1−→ 0 error characteristics that is also applicable to detect A
type faults by using duality, we can say that row based diagnostics cover all types of
faults except G types. Column based diagnostics is proposed to locate G type faults.
However, it is not possible to locate all G type faults with a single row test vector. For
this reason a compaction algorithm is used to optimize the number of test vectors by
finding products sharing most variables.

In [Farazmand and Tahoori 2009], a dual rail implementation is proposed as an on-
line test of detection. Both a logic function f and its negation ¬f are realized in an
AND plane and outputs are received using an OR plane. Since f and ¬f always have
opposite values, it is possible to detect faults by comparing the two values. The area
overhead in comparison with 3- modular redundancy, 5- modular redundancy, parity,

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:31

and duplication methods are favorably given regarding I, O, and P parameters defined
in the previous subsection. Additionally, fault coverage ratios are given. Although the
results are overwhelmingly better for the proposed dual rail technique, the used as-
sumptions are quite weak covering very certain fault characteristics.

7. DISCUSSIONS
In this study, we survey fault tolerance algorithms of reconfigurable nano-crossbar
arrays applicable in logic mapping and configuration processes. Both permanent and
transient faults with different fault modeling approaches are covered. We conduct com-
prehensive simulations to evaluate the proposed algorithms using different fault rates
on industrial benchmark functions. In addition, different area yield values and multi-
ple type defect occurrences are considered.

To make concrete discussions with future directions, brief explanations of the histor-
ical development of fault tolerance in nano-crossbar arrays are given as follows.Nano-
crossbar arrays were first proposed in 1990’s to overcome the upcoming challenges of
integrated circuit miniaturization. Its configurable/reconfigurable attributes as well
as inherent fault tolerance capabilities attracted numerous researchers. However, as
expected, this new technology comes with some challenges and fault tolerance is one
of the significant ones. Fault rates are much higher for nano-crossbars compared to
those of conventional CMOS circuits. Therefore, developing efficient fault tolerance
techniques for nano-crossbars is a must.

At first, defect-unaware methods were proposed motivated by the fact that, config-
uring defective crossbars would be time consuming and impractical. However, area
yields of defect-unaware approaches are proven to be less than ideal. In addition, we
show that, stuck-at activated defects severely decrease the already low area yield val-
ues. As a result, although the number of studies in this field is limited, improving the
yield remains to be a strong motivation for future studies with the fact that achieving
defect-free sub crossbars enables us to use existing and well studied tools.

The line of research which have the most abundant studies is defect-aware methods.
Although research on defect-aware approaches can be considered as mature, there are
still important problems waiting to be solved including a need for specific algorithms to
fine-tune the mapping problem according to multiple-type defect occurrences and dif-
ferent defect distributions. Additionally, current methods such as fitness approxima-
tion and matrix sorting are only able to respond to low defect rates; this issue should
be solved. Another important research direction is developing techniques to restore de-
fect mappings during the configuration process. A similar attempt using probabilistic
data structure is presented in [Wang et al. 2006] with using bloom filters. Last but
not least, in terms of area yield current methods are not fully equipped to produce
optimum results for the realization of given logic functions. Inspiring studies consider-
ing both fault tolerance and yield analysis through the manipulation of logic function
are presented in [Angiolini et al. 2007] and [Hogg and Snider 2006]. New methods
producing better results under stricter area yield constraints would be a good line of
investigation. Additionally, presented approaches can be applicable for memory struc-
tures due to similar problem formalizations [Huang et al. 2004] and [Feng et al. 2013],
as well as for variance tolerance of the crossbars [Tunc and Tahoori 2010], [Yuan et al.
2016], [Ghavami 2016], and [Zhong et al. 2016].

Another trend is developing transient fault tolerance techniques. Fault masking and
reconfiguration with online testing have been proposed. Even though presented meth-
ods are competent, without the field data it is hard to justify the results. In addition,
only configuration level faults are considered in the literature; component level faults
(or regarding the functionality) are open to further investigation. Also, physical real-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 O. Tunali and M. Altun

ization of the architectures is still in infancy, so this line of inquiry is more reasonable
with robust development and wide fabrication of nano-crossbars.

As a summary, we can list the future directions for fault tolerance techniques for
nano-crossbar arrays as follows:

— Fine-tuning for multiple-type faults and different fault distributions;
— Compression and representation of defect maps;
— Improvement of area yield to increase density;
— Decomposition of given logic functions for area optimization;
— Developing variance tolerance techniques;
— Developing fault tolerance techniques for nano-crossbar based memory structures;
— Transient fault tolerance covering component level faults;
— Reliability forecasting for nano-crossbar arrays;
— Developing architectural level transient fault tolerance techniques; and
— Developing fault tolerance techniques for new technologies based on crossbar arrays

including resistive/memristive networks.

REFERENCES
Ahmad A Al-Yamani, Sundarkumar Ramsundar, and Dhiraj K Pradhan. 2007. A defect tolerance scheme

for nanotechnology circuits. IEEE Transactions on Circuits and Systems I: Regular Papers 54, 11 (2007),
2402–2409.

Dan Alexandrescu, Mustafa Altun, Lorena Anghel, Anna Bernasconi, Valentina Ciriani, Luca Frontini, and
Mehdi Tahoori. 2016. Synthesis and Performance Optimization of a Switching Nano-Crossbar Com-
puter. In Digital System Design (DSD), 2016 Euromicro Conference on. IEEE, 334–341.

Rick Amerson, Richard J Carter, W Bruce Culbertson, Philip Kuekes, and Greg Snider. 1995. Teramac-
configurable custom computing. In FPGAs for Custom Computing Machines, 1995. Proceedings. IEEE
Symposium on. IEEE, 32–38.

Federico Angiolini, M Haykel Ben Jamaa, David Atienza, Luca Benini, and Giovanni De Micheli. 2007.
Improving the fault tolerance of nanometric PLA designs. In Design, Automation & Test in Europe
Conference & Exhibition, 2007. DATE’07. IEEE, 1–6.

Debayan Bhaduri, Sandeep Shukla, Heather Quinn, D Bhaduri, S Shukla, and H Quinn. 2004. Reliability
driven probabilistic design paradigm for transient error tolerant architectures on nanofabrics. In Tech.
Rep., Virginia Tech. Citeseer.

Yong Chen, Gun-Young Jung, Douglas AA Ohlberg, Xuema Li, Duncan R Stewart, Jan O Jeppesen, Kent A
Nielsen, J Fraser Stoddart, and R Stanley Williams. 2003. Nanoscale molecular-switch crossbar circuits.
Nanotechnology 14, 4 (2003), 462.

Paul C Chu and John E Beasley. 1997. A genetic algorithm for the generalised assignment problem. Com-
puters & Operations Research 24, 1 (1997), 17–23.

International Roadmap Committee and others. 2008. International technology roadmap for semiconductors.
(2008).

Thomas M Conte and Paolo A Gargini. 2015. On The Foundation Of The New Computing Industry Beyond
2020. International Technology Roadmap for Semiconductors (ITRS) (2015).

Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A (sub) graph isomorphism al-
gorithm for matching large graphs. IEEE transactions on pattern analysis and machine intelligence 26,
10 (2004), 1367–1372.

André Dehon. 2005. Nanowire-based programmable architectures. ACM Journal on Emerging Technologies
in Computing Systems (JETC) 1, 2 (2005), 109–162.

Andre DeHon and Helia Naeimi. 2005. Seven strategies for tolerating highly defective fabrication. Design
& Test of Computers, IEEE 22, 4 (2005), 306–315.

Michael Demjanenko and Shambhu J Upadhyaya. 1990. Yield enhancement of field programmable logic
arrays by inherent component redundancy. IEEE transactions on computer-aided design of integrated
circuits and systems 9, 8 (1990), 876–884.

Manek Dubash. 2005. Moores Law is dead, says Gordon Moore. Techworld (April 2005) (2005).
Navid Farazmand and Mehdi B Tahoori. 2009. Online multiple error detection in crossbar nano-

architectures. In Computer Design, 2009. ICCD 2009. IEEE International Conference on. IEEE, 335–
342.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:33

Wenyi Feng, Floriana Lombardi, Haider AF Almurib, and T Nandha Kumar. 2013. Testing a Nanocrossbar
for Multiple Fault Detection. Nanotechnology, IEEE Transactions on 12, 4 (2013), 477–485.

Harold Fleisher and Leon I. Maissel. 1975. An introduction to array logic. IBM Journal of Research and
Development 19, 2 (1975), 98–109.

Lester R Ford Jr and Delbert R Fulkerson. 1955. A simple algorithm for finding maximal network flows and
an application to the Hitchcock problem. Technical Report. DTIC Document.

Saturnino Garcia and Alex Orailoglu. 2008. Online test and fault-tolerance for nanoelectronic programmable
logic arrays. In 2008 IEEE International Symposium on Nanoscale Architectures. IEEE, 8–15.

Michael R Garey and David S Johnson. 2002. Computers and intractability. Vol. 29. wh freeman New York.
Behnam Ghavami. 2016. Joint defect-and variation-aware logic mapping of multi-outputs crossbar-based

nanoarchitectures. Journal of Computational Electronics 15, 3 (2016), 959–967.
Behnam Ghavami, Alireza Tajary, Mohsen Raji, and Hossein Pedram. 2010. Defect and variation issues on

design mapping of reconfigurable nanoscale crossbars. In VLSI (ISVLSI), 2010 IEEE Computer Society
Annual Symposium on. IEEE, 173–178.

Daniel Gil, David De Andrés, Juan-Carlos Ruiz, and Pedro Gil. 2008. Developing fault models for nanowire
logic circuits. In 2nd Workshop on Dependable and Secure Nanocomputing at IEEE Int. Conf. on De-
pendable Systems & Networks. USA, pp. C6-C11. Citeseer.

Benjamin Gojman and André DeHon. 2009. VMATCH: Using logical variation to counteract physical vari-
ation in bottom-up, nanoscale systems. In Field-Programmable Technology, 2009. FPT 2009. Interna-
tional Conference on. IEEE, 78–87.

Seth Copen Goldstein and Mihai Budiu. 2001. Nanofabrics: Spatial computing using molecular electronics.
ACM SIGARCH Computer Architecture News 29, 2 (2001), 178–191.

Sezer Gören, H Fatih Ugurdag, and Okan Palaz. 2011. Defect-aware nanocrossbar logic mapping through
matrix canonization using two-dimensional radix sort. ACM Journal on Emerging Technologies in Com-
puting Systems (JETC) 7, 3 (2011), 12.

Michael Haselman and Scott Hauck. 2010. The future of integrated circuits: A survey of nanoelectronics.
Proc. IEEE 98, 1 (2010), 11–38.

Chen He and Margarida F Jacome. 2007. Defect-aware high-level synthesis targeted at reconfigurable
nanofabrics. IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems 26, 5
(2007), 817.

Chen He, Margarida F Jacome, and Gustavo de Veciana. 2005. A Reconfiguration-Based Defect-Tolerant
Design Paradigm for Nanotechnologies. IEEE DESIGN & TEST 22, 4 (2005), 0316–326.

James R Heath, Philip J Kuekes, Gregory S Snider, and R Stanley Williams. 1998. A defect-tolerant com-
puter architecture: Opportunities for nanotechnology. Science 280, 5370 (1998), 1716–1721.

Tad Hogg and Greg Snider. 2004. Defect-tolerant logic with nanoscale crossbar circuits. In HP Labs. Cite-
seer.

Tad Hogg and Greg S Snider. 2006. Defect-tolerant adder circuits with nanoscale crossbars. IEEE Transac-
tions on Nanotechnology 5, 2 (2006), 97–100.

John E Hopcroft and Richard M Karp. 1973. An nˆ5/2 algorithm for maximum matchings in bipartite graphs.
SIAM Journal on computing 2, 4 (1973), 225–231.

Jing Huang, Mehdi B Tahoori, and Fabrizio Lombardi. 2004. On the defect tolerance of nano-scale two-
dimensional crossbars. In Defect and Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings.
19th IEEE International Symposium on. IEEE, 96–104.

Yu Huang, Xiangfeng Duan, Qingqiao Wei, and Charles M Lieber. 2001. Directed assembly of one-
dimensional nanostructures into functional networks. Science 291, 5504 (2001), 630–633.

Michiel M Ligthart and Rudi J Stans. 1991. A fault model for PLAs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 10, 2 (1991), 265–270.

Ken McElvain. 1993. IWLS93 benchmark set: Version 4.0. In Distributed as part of the MCNC International
Workshop on Logic Synthesis, Vol. 93.

Mahim Mishra and Seth C Goldstein. 2004. Defect tolerance at the end of the roadmap. In Nano, quantum
and molecular computing. Springer, 73–108.

Muhammed Ceylan Morgul, Furkan Peker, and Mustafa Altun. 2016. Power-Delay-Area Performance Mod-
eling and Analysis for Nano-Crossbar Arrays. In VLSI (ISVLSI), 2016 IEEE Computer Society Annual
Symposium on. IEEE, 437–442.

Csaba Andras Moritz, Teng Wang, Pritish Narayanan, Michael Leuchtenburg, Yao Guo, Catherine Dezan,
and Mahmoud Bennaser. 2007. Fault-tolerant nanoscale processors on semiconductor nanowire grids.
IEEE Transactions on Circuits and Systems I: Regular Papers 54, 11 (2007), 2422–2437.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 O. Tunali and M. Altun

Dhruv Mubayi and György Turán. 2010. Finding bipartite subgraphs efficiently. Inform. Process. Lett. 110,
5 (2010), 174–177.

Helia Naeimi and André DeHon. 2004. A greedy algorithm for tolerating defective crosspoints in NanoPLA
design. In Field-Programmable Technology, 2004. Proceedings. 2004 IEEE International Conference on.
IEEE, 49–56.

Daniel L. Ostapko and Se June Hong. 1979. Fault analysis and test generation for programmable logic
arrays (PLA’s). IEEE Trans. Comput. 28, 9 (1979), 617–627.

Ilia Polian and Wenjing Rao. 2008. Selective hardening of nanopla circuits. In 2008 IEEE International
Symposium on Defect and Fault Tolerance of VLSI Systems. IEEE, 263–271.

Wenjing Rao, Alex Orailoglu, and Ramesh Karri. 2006. Topology aware mapping of logic functions onto
nanowire-based crossbar architectures. In Proceedings of the 43rd annual Design Automation Confer-
ence. ACM, 723–726.

Wenjing Rao, Alex Orailoglu, and Ramesh Karri. 2007. Fault tolerant approaches to nanoelectronic pro-
grammable logic arrays. In 37th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN’07). IEEE, 216–224.

Wenjing Rao, Alex Orailoglu, and Ramesh Karri. 2009. Logic mapping in crossbar-based nanoarchitectures.
IEEE Design & Test of Computers 1 (2009), 68–77.

Robert R Schaller. 1997. Moore’s law: past, present and future. IEEE spectrum 34, 6 (1997), 52–59.
Anish Man Singh Shrestha, Satoshi Tayu, and Shuichi Ueno. 2009. Orthogonal Ray Graphs and Nano-PLA

Design. In ISCAS. 2930–2933.
Max M Shulaker, Gage Hills, Nishant Patil, Hai Wei, Hong-Yu Chen, H-S Philip Wong, and Subhasish

Mitra. 2013. Carbon nanotube computer. Nature 501, 7468 (2013), 526–530.
Muzaffer O Simsir, Srihari Cadambi, Franjo Ivančić, Martin Roetteler, and Niraj K Jha. 2009. A hybrid

nano-CMOS architecture for defect and fault tolerance. ACM Journal on Emerging Technologies in
Computing Systems (JETC) 5, 3 (2009), 14.

James E. Smith. 1979. Detection of faults in programmable logic arrays. IEEE Trans. Computers 28, 11
(1979), 845–853.

Greg Snider, P Kuekes, T Hogg, and R Stanley Williams. 2005. Nanoelectronic architectures. Applied
Physics A 80, 6 (2005), 1183–1195.

Greg Snider, Philip Kuekes, and R Stanley Williams. 2004. CMOS-like logic in defective, nanoscale cross-
bars. Nanotechnology 15, 8 (2004), 881.

Dmitri B Strukov and Konstantin K Likharev. 2005. CMOL FPGA: a reconfigurable architecture for hybrid
digital circuits with two-terminal nanodevices. Nanotechnology 16, 6 (2005), 888.

Dmitri B Strukov and Konstantin K Likharev. 2007. Defect-tolerant architectures for nanoelectronic cross-
bar memories. Journal of Nanoscience and Nanotechnology 7, 1 (2007), 151–167.

Yehua Su and Wenjing Rao. 2009. Runtime analysis for defect-tolerant logic mapping on nanoscale crossbar
architectures. In Proceedings of the 2009 IEEE/ACM International Symposium on Nanoscale Architec-
tures. IEEE Computer Society, 75–78.

Yehua Su and Wenjing Rao. 2011. Defect-tolerant logic implementation onto nanocrossbars by exploiting
mapping and morphing simultaneously. In Proceedings of the International Conference on Computer-
Aided Design. IEEE Press, 456–462.

Yehua Su and Wenjing Rao. 2014. An integrated framework toward defect-tolerant logic implementation
onto nanocrossbars. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
33, 1 (2014), 64–75.

Mehdi B Tahoori. 2006. Application-independent defect-tolerant crossbar nano-architectures. In Proceedings
of the 2006 IEEE/ACM international conference on Computer-aided design. ACM, 730–734.

Mehdi Baradaran Tahoori. 2010. Variation and defect tolerance for diode-based nano crossbars. Nano Com-
munication Networks 1, 4 (2010), 264–272.

Onur Tunali and Mustafa Altun. 2017. Permanent and Transient Fault Tolerance for Reconfigurable Nano-
Crossbar Arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36,
5 (2017), 747–760.

Cihan Tunc and Mehdi B Tahoori. 2010. Variation tolerant logic mapping for crossbar array nano architec-
tures. In Proceedings of the 2010 Asia and South Pacific Design Automation Conference. IEEE Press,
855–860.

Gang Wang, Wenrui Gong, and Ryan Kastner. 2006. On the use of Bloom filters for defect maps in nanocom-
puting. In Proceedings of the 2006 IEEE/ACM international conference on Computer-aided design.
ACM, 743–746.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Survey of Fault Tolerance Algorithms for Reconfigurable Nano-Crossbar Arrays A:35

Teng Wang, Pritish Narayanan, Michael Leuchtenburg, and Csaba Andras Moritz. 2008. NASICs: A
nanoscale fabric for nanoscale microprocessors. In Nanoelectronics Conference, 2008. INEC 2008. 2nd
IEEE International. IEEE, 989–994.

Teng Wang, Pritish Narayanan, and Csaba Andras Moritz. 2007. Combining 2-level logic families in grid-
based nanoscale fabrics. In Proceedings of the 2007 IEEE International Symposium on Nanoscale Ar-
chitectures. IEEE Computer Society, 101–108.

Rainer Waser. 2012. Nanoelectronics and information technology. John Wiley & Sons.
C Wey, M Vai, and Fabrizio Lombardi. 1987. On the design of a redundant programmable logic array (RPLA).

IEEE Journal of Solid-State Circuits 22, 1 (1987), 114–117.
C-L Wey. 1988. On yield consideration for the design of redundant programmable logic arrays. IEEE trans-

actions on computer-aided design of integrated circuits and systems 7, 4 (1988), 528–535.
W Wu, G-Y Jung, DL Olynick, J Straznicky, Z Li, X Li, DAA Ohlberg, Y Chen, S-Y Wang, JA Liddle, and

others. 2005. One-kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by nanoim-
print lithography. Applied Physics A 80, 6 (2005), 1173–1178.

Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Said Hamdioui, and Koen Bertels. 2015. Fast boolean
logic mapped on memristor crossbar. In Computer Design (ICCD), 2015 33rd IEEE International Con-
ference on. IEEE, 335–342.

Hao Yan, Hwan Sung Choe, SungWoo Nam, Yongjie Hu, Shamik Das, James F Klemic, James C Ellenbogen,
and Charles M Lieber. 2011. Programmable nanowire circuits for nanoprocessors. Nature 470, 7333
(2011), 240–244.

J Joshua Yang, Dmitri B Strukov, and Duncan R Stewart. 2013. Memristive devices for computing. Nature
nanotechnology 8, 1 (2013), 13–24.

Joon-Sung Yang and Rudrajit Datta. 2011. Efficient function mapping in nanoscale crossbar architecture.
In 2011 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems. IEEE, 190–196.

Yi Yang, Bo Yuan, and Bin Li. 2011. Defect and variation tolerance logic mapping for crossbar nanoarchitec-
tures as a multi-objective problem. In Information Science and Technology (ICIST), 2011 International
Conference on. IEEE, 1139–1142.

Jun Yao, Hao Yan, Shamik Das, James F Klemic, James C Ellenbogen, and Charles M Lieber. 2014.
Nanowire nanocomputer as a finite-state machine. Proceedings of the National Academy of Sciences
111, 7 (2014), 2431–2435.

Yadunandana Yellambalase and Minsu Choi. 2008. Cost-driven repair optimization of reconfigurable
nanowire crossbar systems with clustered defects. Journal of Systems Architecture 54, 8 (2008), 729–
741.

Bo Yuan and Bin Li. 2011. A low time complexity defect-tolerance algorithm for nanoelectronic crossbar. In
International Conference on Information Science and Technology. IEEE, 143–148.

Bo Yuan and Bin Li. 2014. A fast extraction algorithm for defect-free subcrossbar in nanoelectronic crossbar.
ACM Journal on Emerging Technologies in Computing Systems (JETC) 10, 3 (2014), 25.

Bo Yuan, Bin Li, Huanhuan Chen, and Xin Yao. 2015. A new evolutionary algorithm with structure mutation
for the maximum balanced biclique problem. IEEE transactions on cybernetics 45, 5 (2015), 1054–1067.

Bo Yuan, Bin Li, Huanhuan Chen, and Xin Yao. 2016. Defect-and Variation-Tolerant Logic Mapping in
Nanocrossbar Using Bipartite Matching and Memetic Algorithm. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 24, 9 (2016), 2813–2826.

Bo Yuan, Bin Li, Thomas Weise, and Xin Yao. 2014. A new memetic algorithm with fitness approximation
for the defect-tolerant logic mapping in crossbar-based nanoarchitectures. Evolutionary Computation,
IEEE Transactions on 18, 6 (2014), 846–859.

Masoud Zamani, Hanieh Mirzaei, and Mehdi B Tahoori. 2013. ILP formulations for variation/defect-tolerant
logic mapping on crossbar nano-architectures. ACM Journal on Emerging Technologies in Computing
Systems (JETC) 9, 3 (2013), 21.

Yexin Zheng and Chao Huang. 2009. Defect-aware logic mapping for nanowire-based programmable logic
arrays via satisfiability. In Proceedings of the Conference on Design, Automation and Test in Europe.
European Design and Automation Association, 1279–1283.

Fugui Zhong, Bo Yuan, and Bin Li. 2016. A hybrid evolutionary algorithm for multiobjective variation toler-
ant logic mapping on nanoscale crossbar architectures. Applied Soft Computing 38 (2016), 955–966.

Zhaohui Zhong, Deli Wang, Yi Cui, Marc W Bockrath, and Charles M Lieber. 2003. Nanowire crossbar arrays
as address decoders for integrated nanosystems. Science 302, 5649 (2003), 1377–1379.

Matthew M Ziegler and Mircea R Stan. 2003. CMOS/nano co-design for crossbar-based molecular electronic
systems. IEEE Transactions on Nanotechnology 2, 4 (2003), 217–230.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

