Logic Synthesis for Switching Lattices by Decomposition with P-Circuits

Marie Skłodowska-Curie grant agreement No 691178 (European Union's Horizon 2020 research and innovation programme)

Anna Bernasconi¹, Valentina Ciriani², *Luca Frontini*², Gabriella Trucco², Valentino Liberali³, Tiziano Villa⁴

¹Dipartimento di Informatica, Università di Pisa, Italy, anna.bernasconi@unipi.it

²Dipartimento di Informatica, Università degli Studi di Milano, Italy, {valentina.ciriani, luca.frontini, gabriella.trucco}@unimi.it

³Dipartimento di Fisica, Università degli Studi di Milano, Italy, valentino.liberali@unimi.it

⁴Dipartimento di Informatica, Università degli Studi di Verona, Italy, tiziano.villa@univr.it

Introduction

CMOS technology

- Transistor size has shrunk for decades
- The trend reached a critical point

The Moore's Law era is coming to an end

New emerging technologies

- Biotechnologies, molecular-scale self-assembled systems
- Graphene structures
- Switching lattices arrays

These technologies are in an early state

A novel synthesis approach should be focused on the properties of the devices Synthesis efficiency can be an important factor for a technology choice

We focus on Synthesis for Switching Lattices

Luca Frontini

Logic Synthesis for Switching Lattices by Decomposition with P-Circuit

- **Nanowires** are one of the most promising technologies
 - Nanowire circuits can be made with **self-assembled structures**
 - **pn-junctions** are built crossing *n*-type and *p*-type nanowires
 - Low V_{in} voltage makes p-nanowires conductive and n-nanowires resistive
 - **High** *V*_{in} voltage makes *n*-nanowires conductive and *p*-nanowires resistive

A (1) > A (2) > A

The Switching Lattices

Switching Lattices are two-dimensional arrays of four-terminal switches

- When switches are ON all terminals are connected, when OFF all terminals are disconnected
- Each switch is controlled by a boolean literal, 1 or 0
- The boolean function *f* is the SOP of the literals along each path from **top** to **bottom**
- The function synthesized by the lattice is:

$$f = x_1 x_2 x_3 + x_1 x_2 x_5 x_6 +$$

 $+x_4x_5x_2x_3 + x_4x_5x_6$

From Crossbars to Lattices

For an easier representation, the crossbars are converted to lattices:

- A 'checkerboard' notation is used
- Darker and white sites represent **ON** and **OFF**
- a), b): the 4-terminal switching network and the lattice describing $f = \overline{x}_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 + x_2 x_3$
- c), d): the lattice evaluated on inputs (1,1,0) and (0,0,1)

- * 🗇 * - * 注 * - * 注

September 1, 2016 4 / 15

The synthesis methods

Altun-Riedel, 2012

- Synthesizes f and f^D from top to bottom and left to right
- It produces lattices with size growing **linearly** with the SOP
- Time **complexity is polynomial** in the number of products

	TOP						
LEFT	₹ ₆	₹8	\bar{x}_6	X 4			
	₹ ₈	₹ ₈	X ₅	x ₄			
	₹ ₆	X ₇	X 6	x ₄			
	X 7	X 7	X 5	x ₄	RIC		
	₹ ₆	X 5	X 6	X ₄	HI		
	X_1	x ₁	X_1	x ₁			
	X 2	X 2	X ₂	X 2			
	X 3	X 3	X 3	X 3			
	BOTTOM						

Gange-Søndergaard-Stuckey, 2014

- *f* is synthesized from **top to bottom**
- The synthesis problem is formulated as a **satisfiability problem**, then the problem is solved with a SAT solver
- The synthesis method searches for better implementations starting from an upper bound size
- The synthesis loses the possibility to generate both *f* and *f*^D

	TOP				
X 4	₹ ₆	X 7			
Χ ₂	\bar{x}_5	₹ ₈			
X_1	Χ ₂	Χ ₆			
X 3	0	x ₆			
BOTTOM					

In both examples the synthesized function is:

 $f = \overline{x}_8 \overline{x}_7 \overline{x}_6 x_3 \overline{x}_2 x_1 + \overline{x}_8 \overline{x}_7 \overline{x}_5 x_3 \overline{x}_2 x_1 + x_4 x_3 \overline{x}_2 x_1$

Let $f\{x_1, \ldots, x_n\}$ be a completely specified Boolean function

- Shannon decomposition: $f = \overline{x}_i f|_{\overline{x}_i} + x_i f|_{x_i}$
- EXOR-based decomposition: f = (x̄_i ⊕ p)f|_{xi=p} + (x_i ⊕ p)f|_{xi≠p}, where p does not depend on x_i

These decompositions are **not oriented to area minimization**: the cubes of f may be split into two smaller sub-cubes when projected onto $f|_{x_i=p}$, and $f|_{x_i\neq p}$.

P-circuits keep unprojected some points of the original function: defining $I = f|_{x_i=p} \cap f|_{x_i\neq p}$, we can keep *I* unprojected

$$f = (\overline{x}_i \oplus p)(f|_{x_i = p} \setminus I) + (x_i \oplus p)(f|_{x_i \neq p} \setminus I) + I$$

In this way we avoid to split the cubes of f

イロト イポト イヨト イヨト

Definition

A *P*-circuit of a completely specified function f is the circuit P(f) denoted by the expression:

$$P(f) = (\overline{x}_i \oplus S(p)) S(f^{-}) + (x_i \oplus S(p)) S(f^{\neq}) + S(f')$$

where:

$$\begin{array}{l} \bullet \left(f|_{x_i=p} \setminus I\right) \subseteq f^{=} \subseteq f|_{x_i=p} \\ \bullet \left(f|_{x_i\neq p} \setminus I\right) \subseteq f^{\neq} \subseteq f|_{x_i\neq p} \\ \bullet & \emptyset \subseteq f^{I} \subseteq I \\ \bullet & \Psi(f) = f \end{array}$$

Disjunction and conjunction of lattices

f + g

- separate the paths from top to bottom for f and g
- add a column of 0s
- add padding rows of 1s if lattices have different number of rows

$f \cdot g$

- any top-bottom path of f is joined to any top-bottom path of g
- add a row of 1s
- add padding columns of 0s if lattices have different number of columns

A (1) > A (2) > A

Theorem

Let f be a Boolean function depending on n binary variables, and let $P(f) = (\overline{x}_i \oplus S(p)) S(f^=) + (x_i \oplus S(p)) S(f^{\neq}) + S(f^I)$ be a P-circuit representing f. The lattice obtained composing the lattices for the three sets $f^=$, f^{\neq} , and f^I and for the functions $(\overline{x}_i \oplus p)$ and $(x_i \oplus p)$ implements the function f.

						-
$\overline{x}_{i} \oplus p$	0	0 0	$x_i \oplus p$	0	0 0	f
1 1	1		11	1		,
f =			f≠			1
1		0			0	•

P-circuit projection function

Corollary

The two lattices on the right implement a function f through its P-circuit representations with projection functions p = 0 and $p = x_j$, respectively.

Synthesis example

In this example is used the synthesis by Altun-Riedel

 $\begin{array}{l} z4(2) = x_3\overline{x}_4\overline{x}_6\overline{x}_7 + x_1\overline{x}_3x_4\overline{x}_6 + \\ \overline{x}_1x_3\overline{x}_6\overline{x}_7 + \overline{x}_3\overline{x}_4x_6\overline{x}_7 + x_1x_3x_4\overline{x}_6 + \\ x_1\overline{x}_3\overline{x}_6x_7 + \overline{x}_1x_3\overline{x}_4\overline{x}_6 + \overline{x}_3x_4\overline{x}_6x_7 + \\ \overline{x}_1\overline{x}_3\overline{x}_4x_6 + x_1x_3x_6x_7 + x_3x_4x_6x_7 \end{array}$

The lattice size without decomposition is 12×12

P-circuit representation:

$$P(z) = \overline{x}_1 S(z^{=}) + x_1 S(z^{\neq}) + S(z^{\prime})$$

 $S(z^{=}) = \overline{x}_3 \overline{x}_4 x_6 + x_3 \overline{x}_4 \overline{x}_6 + \overline{x}_3 x_6 \overline{x}_7 + x_3 \overline{x}_6 \overline{x}_7$

$$S(z^{\neq}) = x_3 x_4 x_6 + \overline{x}_3 x_4 \overline{x}_6 + x_3 x_6 x_7 + \overline{x}_3 \overline{x}_6 x_7 + \overline{x}_3 \overline{x}_4 x_6 \overline{x}_7 + x_3 \overline{x}_4 \overline{x}_6 \overline{x}_7$$

$$S(z') = x_3 x_4 x_6 x_7 + \overline{x}_3 x_4 \overline{x}_6 x_7$$

- Benchmarks are taken from LGSynth93
- Each benchmark output is considered as a separate boolean function
- A total of 1886 functions
- We evaluate the results for p = 0 using $x_i = x_1$
- We compare P-circuits decomposition with synthesis by Altun-Riedel, 2012 and Gange-Søndergaard-Stuckey, 2014
- We use a collection of Python scripts and a SAT solver to perform the Gange-Søndergaard-Stuckey synthesis.
- The algorithm has been implemented in C
- The experiments have been run on a machine with 16 CPU @2.5 GHz, running Centos 6.6

< 🗇 🕨 🔺 🚍 🕨 🔺

F-Name	Altun-Riedel		Gange-Søndergaard-Stuckey		
	standard	P-circuit	standard	P-circuit	
	Row×Col	Row×Col	$Row{ imes}Col$	$Row \times Col$	
bcc(35)	24×38	25×24	*	*	
alu2(6)	14 imes 13	17×10	*	16 ×10	
bench(3)	4×6	7×4	4 × 3	6×4	
ex5(46)	6×3	6×3	*	*	
ex5(57)	10×8	14×8	3×7	13×3	
max128(9)	10×9	14×7	4 ×6	13×4	
max128(10)	16 imes17	17×10	*	15 ×10	

 \star : does not end in 10 min. for each SAT problem

・ロト ・回ト ・ヨト ・

Results of the Experiments

To evalutate our approach we compare our results with the ones obtained in Altun-Riedel and in Gange-Søndergaard-Stuckey

Decomposing the function with P-circuits we obtain:

Altun-Riedel

- More compact area in 36% of cases
- Average area reduction of about 25%
- Very limited increase in time

Gange-Søndergaard-Stuckey

- More compact area in 33% of cases
- Average area reduction of about 24%
- In overall we save area and time
- In many cases the method Gange-Søndergaard-Stuckey fails in computing a result in a reasonable time
- We set a maximum of ten minutes for each SAT execution
- If synthesis is stopped we use the synthesis method by Altun-Riedel

- A new method for the synthesis of lattices with reduced size
- Based on P-circuit decomposition
- The lattice synthesis benefits from this decomposition:
 - smaller lattices: at least 24% of area reduction in 33% of functions
 - affordable computing time, in some cases even less time than without decomposition

In future works we will apply more complex types of decomposition

- within the P-circuit class
- other decomposition methods

▲ 同 ▶ → 三 ▶