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Novel Methods for Efficient Realization of Logic
Functions Using Switching Lattices

Levent Aksoy and Mustafa Altun

Abstract—Two-dimensional switching lattices including four-terminal switches are introduced as alternative structures to realize logic
functions, aiming to outperform the designs consisting of one-dimensional two-terminal switches. Exact and approximate algorithms
have been proposed for the problem of finding a switching lattice which implements a given logic function and has the minimum size,
i.e., a minimum number of switches. In this article, we present an approximate algorithm, called JANUS, that explores the search space
in a dichotomic search manner. It iteratively checks if the target function can be realized using a given lattice candidate, which is
formalized as a satisfiability (SAT) problem. As the lattice size and the number of literals and products in the given target function
increase, the size of a SAT problem grows dramatically, increasing the run-time of a SAT solver. To handle the instances that JANUS

cannot cope with, we introduce a divide and conquer method called MEDEA. It partitions the target function into smaller sub-functions,
finds the realizations of these sub-functions on switching lattices using JANUS, and explores alternative realizations of these
sub-functions which may reduce the size of the final lattice. Moreover, we describe the realization of multiple functions in a single lattice.
Experimental results show that JANUS can find better solutions than the existing approximate algorithms, even than the exact algorithm
which cannot determine a minimum solution in a given time limit. On the other hand, MEDEA can find better solutions on relatively large
size instances using a little computational effort when compared to the previously proposed algorithms. Moreover, on instances that the
existing methods cannot handle, MEDEA can easily find a solution which is significantly better than the available solutions.

Index Terms—emerging technologies, four-terminal switch, switching lattice, logic synthesis, satisfiability, binary search.
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1 INTRODUCTION

As the Moore’s law [1], i.e., the number of transistors dou-
bles in the given chip every two years, has been reaching
its limit [2], researchers have been exploring new tech-
nologies and structures. Nanotechnology, which aims to
build materials and devices on the scale of atoms and
molecules, has been an emerging technology to tackle the
limitations of the conventional CMOS technology [3]. Recent
years have seen successful design of memory cores and
programmable logic arrays and interconnects using nano-
technologies [4], [5]. Moreover, architectures and structures
for the nano-electronic computation, realizing simple logic
gates, such as NAND and NOR, and implementing complex
logic circuits, such as adders and microprocessors, have
been introduced [6], [7], [8], [9], [10].

As shown in [11], a four-terminal switch, developed
especially for the cross-points of nanoarrays, can be used to
realize logic functions. As illustrated in Fig. 1a, if its control
input x has the value 0, all its terminals are disconnected
(OFF). Otherwise, they are connected (ON). In a switching
lattice, that is formed as a network of four-terminal switches,
each switch is connected to its horizontal and vertical neigh-
bors. A 3× 3 switching network is shown in Fig. 1b where
x1, . . . , x9 denote the control inputs of switches. The lattice
function, whose inputs are the control inputs of switches,
evaluates to 1 if there is a path between the top and bottom
plates of the lattice and is written as the sum of products of
control inputs of switches in each path. In a lattice with
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Fig. 1. (a) Four-terminal switch; (b) the 3 × 3 four-terminal switching
network; (c) the 3× 3 switching lattice function.

four-terminal switches, a path is a sequence of switches
connected by taking horizontal and vertical moves. Fig. 1c
shows the 3× 3 lattice function f3×3. A lattice function is
unique and does not include any redundant products, e.g.,
a possible path x3x2x1x4x7 in the 3 × 3 switching network
is eliminated by the path x1x4x7.

One of the main advantages of using switching lattices
is its reconfigurability. As shown in this article, there exists
a switching lattice that can be used to realize all logic
functions with a certain number of variables. Its another
advantage is to reduce the number of switches when com-
pared to the conventional two-terminal switches, such as
field-effect transistors, in a given design. As an example,
consider f(a, b, c, d) =

∑
(2, 3, 4, 8, 9, 12, 14, 15) which can

be written as f = abc+ abc+ abc+ bcd. Taking into account
the most commonly used CMOS technology, its straight-
forward two-level realization using AND and OR gates, as
shown in Fig. 2a, requires 42 CMOS transistors without
counting the ones for the inverters of primary inputs. The
number of CMOS transistors can be reduced further as
follows: i) apply a state-of-art logic synthesis tool to the
given logic function using a synthesis script; ii) map the
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Fig. 2. Realizations of f = abc + abc + abc + bcd: (a) two-level;
(b) considering further reduction in the number of CMOS transistors;
(c) using the 3× 3 lattice with four-terminal switches.

design into gates of a given library where the cost value
of a gate is defined in terms of the number of CMOS
transistors required to build the gate; iii) compute the design
complexity in terms of the number of required transistors;
and iv) repeat this process for a number of synthesis scripts
and keep the design with the least complexity. In this work,
we used ABC [12] as a logic synthesis tool, its 17 synthesis
scripts, and a gate-library which is the extended version of
the mcnc.genlib library. Fig. 2b presents the solution found
for our example which requires 26 CMOS transistors with-
out counting the ones for the inverter of a primary input. On
the other hand, the realization of f using the 3× 3 lattice1,
shown in Fig. 2c, needs 9 four-terminal switches.

It is shown in [13] that a four-terminal switch can be de-
veloped using the conventional CMOS technology and can
be used to form a switching lattice. Fig. 3a and b present two
CMOS-compatible devices introduced for the development
of the four-terminal switch whose gate structure is square
and cross, respectively. In this figure, T1, T2, T3, and T4
stand for the four terminals. Further details on the tech-
nology development can be found in [13]. It is confirmed
through technology simulations that these devices behave
as a four-terminal switch. During the fabrication process in
implementation of a four-terminal switch, it is observed that
the compact structure of a lattice, shown in Fig. 3c, has a
potential to yield significant savings in area. This is mainly
because the excessive area due to the placement and routing
of transistors and gates [14] does not occur in the design of a
switching lattice and the realization of a logic function using
a lattice generally needs less number of switches than that
in the conventional CMOS realization as shown in Fig 2.

In recent years, many algorithms have been introduced
to realize a logic function on a switching lattice using the
fewest number of switches [15], [16], [17], [18], [19], [20].
However, while the exact algorithm [15] can only handle
relatively small instances, the approximate algorithms [16],
[17], [18], [19] can find solutions that are far away from the
minimum. Hence, in this article, we present the approxi-
mate algorithm of [20], called JANUS, that can find better
solutions using less computational effort when compared to
the existing approximate algorithms. It improves the initial
boundaries of the search space significantly and uses an
efficient SAT formulation for the problem of finding if a
given target function can be realized using a given switching

1. Keeping the same order in the products and variables of f3×3 in
Fig. 1c, the function realized by the lattice can be given as f = aca +
b1b+dca+ac1b+b1ca+b1ca+dc1b+ac1ca+dc1ca. After the application
of Boolean algebra laws, it can be given as f = acd+abc+abc+abc+bcd.
Note that the acd product can also be eliminated by the consensus law.

(a) (b) (c)

Fig. 3. (a) Square-shaped four-terminal switch; (b) cross-shaped four-
terminal switch; (c) illustration of the 3× 3 lattice including four-terminal
switches where the vertical wires denote the control inputs.

lattice. However, as the number of literals and products in
a logic function increases, the SAT problem complexity goes
beyond the reach of state-of-art SAT algorithms. In order
to handle such complex instances that JANUS finds hard to
cope with, we introduce a divide and conquer algorithm
called MEDEA. It is observed that MEDEA can find solutions
using significantly less time than JANUS and its solutions are
better than those of the previously proposed approximate
algorithms and close to those of JANUS on logic functions
with a small number of products. It is shown on the logic
functions, which the existing algorithms cannot handle, that
the solutions of MEDEA have significantly less number of
switches than the best solutions found so far. Finally, in
this article, we present an efficient way of realizing multiple
functions in a single lattice using the proposed methods.

The rest of this article is organized as follows: Section 2
presents the background concepts, problem definitions, and
related work. The proposed algorithms are introduced and
the realization of multiple functions in a single lattice is
described in Section 3. Experimental results are shown in
Section 4 and finally, Section 5 concludes the article.

2 BACKGROUND

2.1 Preliminaries

A Boolean logic function, f : Br → B, over r variables
x1, . . . , xr maps each truth assignment in Br to 0 or 1. The
logic function f in sum of products (SOP) form on r variables
is a disjunction of s products p1, . . . , ps, where a product
pi = l1 · l2 · . . . · lj , i ≤ s and j ≤ r, is a conjunction of
literals. A literal lj , j ≤ r, is either a variable xj or its
complement xj . A product is an implicant if and only if
it evaluates f to 1 and it is a prime implicant if it is an
implicant and there exist no other implicants whose literals
are subset of its literals. In an irredundant SOP (ISOP) form of
f , every product is a prime implicant and no product can be
deleted without changing f . The degree of f is the maximum
number of literals in the products of f . The dual of f can
be computed as fD(x1, . . . , xr) = f(x1, . . . , xr) and can
be found by interchanging the AND and OR operations and
the constants 0 and 1 as well. The Shannon expansion of
f is given as f = xifxi

+ xifxi
, 1 ≤ i ≤ r, where fxi

and fxi
stand for the negative and positive co-factors of f

which are computed by replacing xi with logic 0 and 1 in f ,
respectively and include maximum r − 1 variables.

A Boolean function ϕ in product of sums (POS) form on
r variables is a conjunction of t clauses c1, . . . , ct, where a
clause ci = l1+l2+. . .+lj , i ≤ t and j ≤ r, is a disjunction of
literals. If a literal of a clause is set to 1, the clause is satisfied.
If all literals of a clause are set to 0, the clause is unsatisfied.
The satisfiability (SAT) problem is to find an assignment to
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Fig. 4. A combinational network and its POS formula.

the variables of a function ϕ in POS form that makes ϕ to be
equal to 1 or to prove that ϕ is equal to 0. The SAT problem
is NP-complete [21].

A combinational circuit is a directed acyclic graph with
nodes and directed edges corresponding to logic gates and
wires connecting the gates, respectively. The POS formula of
a combinational circuit is the conjunction of POS formula of
each gate which denotes the valid input-output assignments
to the gate. The derivation of POS formulas of basic logic
gates can be found in [22]. Fig. 4 shows a combinational
circuit and its formula in the POS form.

The 0-1 integer linear programming (ILP) problem is the
minimization or the maximization of a linear objective func-
tion subject to a set of linear constraints and is generally
defined as follows2:

minimize wT · y (1)
subject to A · y ≥ b, y ∈ {0, 1}k (2)

In the objective function given in Eqn. 1, each weight wi
associated with each variable yi is an integer value, where
1 ≤ i ≤ k. In Eqn. 2, A · y ≥ b denotes the set of j linear
constraints, where b ∈ Zj and A ∈ Zj × Zk.

2.2 Switching Lattices

2.2.1 Computing the Lattice Function
In a switching lattice, a four-connected path is a sequence
of switches connected by taking horizontal and verti-
cal moves and a lattice function includes all irredundant
four-connected paths between the top and bottom plates.
An eight-connected path is generated by taking diagonal
moves in addition and the dual of a lattice function consists
of all irredundant eight-connected paths between the left
and right plates [11]. For example, the dual of the lattice
function f3×3 given in Fig. 1c has 17 products all with three
variables3. Thus, finding a realization of a target function on
an m × n switching lattice considering the four-connected
paths between the top and bottom plates can also be done
by finding a realization of the dual of target function on the
same m × n lattice considering the eight-connected paths
between the left and right plates. This is because taking the
dual of a logic function twice leads to the function itself.

Table 1 presents the number of products in the m × n
lattice function and its dual at the top and bottom of each
entry, respectively, where 2 ≤ m,n ≤ 8. Similarly, Table 2
shows the degree of the m × n lattice function and its dual
at the top and bottom of each entry, respectively.

2. The maximization objective can be easily converted to a minimiza-
tion objective by negating the objective function. Less-than-or-equal
and equality constraints are handled by the equivalences, A · y ≤ b⇔
−A ·y ≥ −b and A ·y = b⇔ (A ·y ≥ b)∧ (A ·y ≤ b), respectively.

3. fD
3×3 = x1x2x3+x1x2x6+x1x5x3+x1x5x6+x1x5x9+x4x2x3+

x4x2x6 + x4x5x3 + x4x5x6 + x4x5x9 + x4x8x6 + x4x8x9 + x7x5x3 +
x7x5x6 + x7x5x9 + x7x8x6 + x7x8x9.

TABLE 1
Number of products in the m× n lattice function and its dual.
m/n 2 3 4 5 6 7 8

2 2 3 4 5 6 7 8
4 8 16 32 64 128 256

3 4 9 16 25 36 49 64
7 17 41 99 239 577 1393

4 6 17 36 67 118 203 344
10 28 78 216 600 1666 4626

5 10 37 94 205 436 957 2146
13 41 139 453 1497 4981 16539

6 16 77 236 621 1668 4883 14880
16 56 250 1018 4286 18730 81192

7 26 163 602 1905 6562 26317 110838
19 73 461 2439 13833 86963 539537

8 42 343 1528 5835 25686 139231 797048
22 92 872 6004 45788 421182 3779226

TABLE 2
Degree of the m× n lattice function and its dual.

m/n 2 3 4 5 6 7 8

2 2 2 2 2 2 2 2
2 3 4 5 6 7 8

3 4 5 6 7 8 9 10
2 3 4 5 6 7 8

4 5 6 7 10 11 12 13
2 4 6 7 9 11 12

5 7 9 11 13 16 18 20
2 5 7 9 12 15 18

6 8 10 12 16 19 22 24
2 6 8 11 14 17 20

7 10 13 16 19 23 26 29
2 7 9 13 15 19 22

8 11 14 17 22 26 30 33
2 8 10 15 17 22 26

Observe from these tables that as the number of rows
and columns increases, the number of products and degree
of lattice functions increase dramatically, pointing out the
lattices that can be used to realize a rich variety of logic
functions. Note that a lattice function may have fewer or
more products than its dual, e.g., 2× 4 and 8× 4 lattices as
shown in Table 1. On the other hand, the degree of a lattice
function is greater than that of the dual of a lattice function,
except when m is equal to 2. For the lattices with the same
size, there exists a wide range of functions with different
number of products and degrees. As an example, while
f3×8 includes 64 products with a degree of 10, f6×4 has 236
products with a degree of 12. This is also true for the lattices
with sizes very close to each other. For example, while f5×7
has 957 products with a degree of 18, f6×6 contains 1668
products with a degree of 19. We note that not only the
degree and the number of products, but also the number of
literals in each product is important while realizing a logic
function on a switching lattice.

2.2.2 Reconfigurable Switching Lattices
Similar to the look-up tables in field programmable gate
arrays [23], a switching lattice can be used as a reconfig-
urable block which can realize all logic functions with r
variables. An upper-bound on the size of such a switching
lattice can be determined based on the Shannon expansion
in a recursive manner. Fig. 5a presents the realization of the
Shannon expansion of a logic function, f = xifxi + xifxi ,
using a switching lattice when i is r. Since any logic function
including 1 variable requires a 1 × 1 lattice, any logic
function with 2 variables can be realized using the 2 × 3
lattice as shown in Fig 5b. Note that the co-factors fx2 and
fx2 include maximum one variable, i.e., x1. Thus, any logic
function with 3 variables can be realized using a 3×7 lattice
as shown in Fig 5c where the co-factors fx3 and fx3 , which
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Fig. 5. (a) Realization of f = xrfxr + xrfxr using a switching lattice;
lattices which can be used to realize any logic function including r
variables: (b) 2× 3 lattice when r is 2; (c) 3× 7 lattice when r is 3.
include maximum two variables, are realized as given in
Fig 5b. Hence, to realize any logic function with r variables,
an r × 2r − 1 lattice can be used. Observe that the size of
such a lattice grows exponentially as r increases.

On the other hand, by trying all possible logic functions,
the switching lattice with the minimum size that can be used
to realize any logic function with 2, 3, and 4 variables is
found to be the 2 × 2, 3 × 3, and 3 × 6 lattice, respectively.
Hence, using the Shannon expansion in a recursive manner,
the size of the lattice, which can be used to realize any logic
function with r variables when r ≥ 5, can be formulated as
(r−1)×(6·2r−5+2r−2−1). For example, any logic function
with 5 and 6 variables can be realized using the 4 × 13 and
5 × 27 lattice using the new formula rather than the 5 × 31
and 6× 63 lattice, respectively.

2.3 Problem Definitions
Realization of a logic function using a switching lattice
can be obtained by simply mapping the appropriate liter-
als of this target function and/or constant values (0 and
1) to the control inputs of switches. The lattice mapping
(LM) problem, is defined as: given a target function f
and an m × n lattice function fm×n, find the appropriate
assignments to the lattice variables such that the target
function f can be realized on the m × n lattice or prove
that there exists no such assignment. The LM problem was
shown to be NP-complete in [15]. As an example, consider
f(a, b, c, d, e) =

∑
(1, 6, 7, 14, 17, 21, 24, 25, 30) which can

be written as f = abcd+abcd+ bcde+ bcde+abde. It can be
realized using the 4 × 4 lattice as shown in Fig. 6a and the
5× 3 lattice, but cannot be realized using the 3× 3 lattice.

In the realization of a logic function using a switching
lattice, the design complexity is determined as the number
of switches, i.e., the lattice size. Thus, the lattice synthesis
(LS) problem, is defined as: given the target function f ,
find an m × n lattice such that there exists an appropriate
assignment to the lattice variables, realizing f , and m times
n is minimum. Returning to our example, Fig. 6b presents
the realization of the target function on a lattice with the
minimum size of 4× 3.

2.4 Related Work
Over the years, logic structures and arrays, that provide
regularity, reconfigurability, and ease of design, have been
introduced to realize logic functions [24], [25], [26]. A struc-
ture similar to the switching lattices can be found in [26]
where a rectangular logic array is composed of cells, each
connecting to its neighbors. Each cell, which is a three-input
and two-output circuit, connects the up and right cell to the
down and left one based on the input values.

In order to realize logic functions using switching lat-
tices, the recursive method of [27] maps logic functions
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Fig. 6. Realizations of f = abcd + abcd + bcde + bcde + abde using
switching lattices: (a) 4× 4; (b) 4× 3.

onto nanowire based crossbar architectures with different
topologies rather than using a regular switching lattice
structure. In [11], an upper bound on the lattice size is
computed by finding common literals in the products of
the target function and its dual and the lower bound on the
lattice size is obtained based on the minimum degrees of
the target function and its dual. The exact algorithm of [15]
explores the search space using a binary search technique
in between the lower and upper bounds computed in [11].
During this search, for each possible lattice, an LM problem
is generated. The LM problem is encoded as a quantified
Boolean formula (QBF) problem, the QBF constraints are
converted to SAT clauses, and a solution is found using a
SAT solver. The approximate method of [15] restricts this
exact QBF formulation by allowing the paths to include
only the literals in the given products, reducing the size
of SAT problems. However, since the approximate method
may yield a non-optimal solution, it may solve more LM
problems than the exact method. The technique of [17]
synthesizes the D-reducible form of a target function, which
is composed of two small sub-functions, on a switching
lattice. In [17], these sub-functions are synthesized using the
algorithm of [15] and then, their solutions are merged into
a single lattice. Note that not every logic function can be
represented in the D-reducible form. Similarly, the methods
of [16], [18] exploit the p-circuits and autosymmetric form of
a target function, respectively and use the algorithms of [11],
[15] to find a solution on the decomposed sub-functions.
In [18], the target function is synthesized with multiple
lattices sharing the common ones, but adding extra logic
gates which may not be desirable due to the wires between
these gates and lattice control inputs. The method of [19]
determines a number of promising lattice candidates and
uses a method of [15] to find if one of these lattices leads to
a solution.

3 PROPOSED ALGORITHMS

In this section, we initially describe the approximate algo-
rithm and then, the divide and conquer method, both de-
veloped for the realization of a single logic function using a
switching lattice. Finally, we present the method developed
for the realization of multiple functions on a single lattice.

3.1 JANUS: An Approximate Algorithm

JANUS takes the target function f as an input and finds its
implementation on a switching lattice as described below:

1) Determine the lower bound (lb) and upper bound (ub) of
the LS problem in terms of the number of switches.

2) If lb = ub, return the solution found while computing
ub.
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Fig. 7. Computing the upper bound of f = abc+ abc+ abc+ bcd using different methods: (a) DS; (b) PS; (c) DPS; (d) IPS; (e) IPDS; (f) DS.

3) Determine the middle point as mp = b(lb + ub)/2c and
generate a set of lattice candidates C .

4) For each lattice candidate in C , generate the related LM
problem and check if f can be realized using the lattice
candidate. If there exists a solution to the LM problem,
set ub to mp and go to Step 6.

5) If there are no solutions for all lattice candidates in C ,
set lb to mp+ 1.

6) If lb < ub, go to Step 3. Otherwise, return the solution.
In following, we introduce the methods that compute the

initial lower and upper bounds of the LS problem (Step 1),
describe how the lattice candidates are generated (Step 3),
present the encoding of the LM problem as a SAT problem
(Step 4), and analyze the SAT problem complexity.

3.1.1 Computing the Initial Lower and Upper Bounds
The computation of the initial lower bound of the LS prob-
lem takes into account the products of the lattice and target
functions and their duals and is described as follows:

1) Find the ISOP forms of the target function and its
dual, both including a minimum number of products
obtained using a logic minimization tool.

2) Set the lattice size ls equal to 1.
3) Obtain all possible lattice candidates with the size ls

and apply the structural check procedure to each lattice
candidate. If the structural check is passed, return the
lower bound computed as ls. Otherwise, try another
lattice candidate.

4) If there exist no lattices with the lattice size ls that pass
the structural check, increase ls by 1 and go to Step 3.

In the structural check procedure, we check for each
product of the target function with j literals if the lattice
candidate function has a different product with a number
of literals greater than or equal to j. If it is so, similarly, we
check if each product of the dual of target function is cov-
ered by a different product of the dual of lattice candidate
function. In this work, we use espresso [28] as a logic min-
imization tool. Consider our example in Fig. 2 and assume
that ls is equal to 8. Note that the dual of the target function
f = abc+ abc+ abc+ bcd is fD = abc + abc + abc + bcd.
For the lattice size ls equal to 8, there exist four possible
lattices, i.e., 1× 8, 2× 4, 4× 2, and 8× 1. There are eight
products with only one variable in f1×8 = x1 + x2 + x3 +
x4 + x5 + x6 + x7 + x8, f2×4 = x1x5 + x2x6 + x3x7 + x4x8
has four products each including only two variables, and
similarly, fD4×2 = x1x2+x1x4+x3x2+x3x4+x3x6+x5x4+
x5x6 + x5x8 + x7x6 + x7x8 has ten products each including
only two variables, and finally, there exists only one product

in f8×1 = x1x2x3x4x5x6x7x8. Hence, the structural check
confirms that all these lattices cannot be used to realize the
target function. Thus, ls is increased to 9 and it is found that
all products of the target function and its dual are covered
by the products of the 3 × 3 lattice function and its dual,
respectively. Hence, the initial lower bound is determined
as 9. Similarly, for our example in Fig. 6, where the dual of
the target function f = abcd + abcd + bcde + bcde + abde
is fD = cd + acd + abd + bcd + abd + bde + bce, the initial
lower bound is computed as 9.

There exist three efficient methods used to find an initial
upper bound. The dual production (DP) [11] method real-
izes a target function using an u×v lattice, where v and u are
the number of products in the target function and its dual,
respectively. In the product separation (PS) method [15], the
v products of a target function are placed on the columns
of a lattice each separated by a column full of zeros, filling
the unspecified entries of the lattice with constant 1. Thus, a
solution with a δ × (2v − 1) lattice is found where δ is the
degree of the target function. In the dual product separation
(DPS) method [19], the u products of the dual of target
function are placed on the rows of a lattice separated by a
row full of ones, filling the unspecified entries of the lattice
with constant 0. Thus, a solution with a (2u− 1)× γ lattice
is found where γ is the degree of the dual of target function.

For our example in Fig. 2, as shown in Fig. 7a-c, the DP,
PS, and DPS methods find a solution with the 4 × 4, 3 × 7,
and 7 × 3 lattice, respectively. For our example in Fig. 6,
we note that the solution of the DP, PS, and DPS methods
includes the 7× 5, 4× 9, and 13× 3 lattice, respectively.

However, the PS and DPS methods can be modified
to decrease the required number of switches by reducing
the number of isolation columns and rows between the
products, i.e., the ones full of constant 0 and 1, respectively.
We developed the improved version of the PS method,
called IPS, as follows:

1) Find the products with two literals, put each of them
side by side by placing one literal on the δth row and
the other on the other rows of that column, and finally,
add an isolation column if there are products with more
than 2 literals.

2) For each product, pi, find another product, pj , both
including more than 2 literals, so that the pair function
fp = pi + pj can be realized using a δ × 2 lattice,
i.e., without using an isolation column. Such a product
is found if the number of products in the dual of the
pair function, fDp , is less than or equal to δ. If such
a product, pj , exists, add the realization of the pair
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function into the lattice. Otherwise, add pi into the
lattice. If there exists other product(s) with more than
2 literals to consider, add an isolation column.

3) Find the products with a single literal and if there exist
isolation columns, for each product, place its literal on
every row of an isolation column full of constant 0. If
the number of isolation columns is less than the number
of such products, put each remaining product side by
side by placing its literal on every row of that column.

The improved version of the DPS method, called IDPS,
can be developed similarly. It consists of the second step of
the IPS method, where the products including more than 1
literal are considered, and its third step.

For our example in Fig. 2, as shown in Fig. 7d and e,
the IPS and IDPS methods find a solution with the 3 × 5
lattice and the 5× 3 lattice, respectively. For our example in
Fig. 6, we note that the solution of the IPS and IDPS methods
includes the 4× 7 and 10× 3 lattice, respectively.

The run-time complexity of these methods is bounded
by the complexity of finding the dual of a logic function
which can be obtained using a little computational effort
on functions even with a large number of products by the
state-of-art logic minimization tools. For example, the dual
of a logic function with 14 variables, 90 products (the largest
in our experiments), and a degree value of 9, is found less
than a second using espresso. However, we observed in our
experiments that the solutions of these methods can be far
away from the minimum on the logic functions including
more than 10 products. Hence, a divide and synthesize (DS)
method, which is based on our divide and conquer method
described in Section 3.2, is developed. The DS method
consists of three main steps described as follows:

1) Partition the products in the target function f into two
sub-functions f1 and f2 such that f = f1+f2, where f1
and f2 have a number of products close to each other
and a minimum number of literals.

2) Apply JANUS to these sub-functions and add its solu-
tions into a lattice using a single isolation column.

3) For each sub-function, explore alternative realizations
with a small number of rows and columns.

The partitioning of products into two sub-functions in
the first step is formulated as a 0-1 ILP problem and solved
using a 0-1 ILP solver. To explore alternative realizations of
sub-functions in the third step, we initially compute the size
and number of rows of the lattice found at the second step,
denoted as the best cost bc and best row br, respectively.
Then, we apply the following procedure when br ≥ 3.

1) For each solution of a sub-function with anm×n lattice,
where m ≥ br > 3, check if a (br− 1)× k lattice, where
k > n, can be used to synthesize this sub-function. Note
that k initially set to n is incremented by 1 till the bc
value is exceeded or a solution is found.

2) For each solution of a sub-function with anm×n lattice,
where m < br − 1, check if this sub-function can be
realized using an (br−1)×k lattice, where k < n. Note
that k initially set to n is decremented by 1 till there
exists no solution.

3) If a solution with a size less than bc is found, update
the lattice and its cost.

(a) (b)

f1 

(4x3)

f2 

(3x4) f2 

(4x3)

f1 

(3x4)

f2 

(3x4)

(c)

0
0
0
0
0

1
1

1
1

1
1

1
1

f1 

(5x2)

0
0
0
0

0
0
0

Fig. 8. An illustrative example for the realization of f = f1 + f2: (a) the
5× 7 lattice; (b) the 4× 7 lattice; (c) the 3× 9 lattice.

4) If br > 3, decrease br by 1 and go to Step 1. Otherwise,
return the lattice.

As an illustrative example, assume that after the target
function is partitioned into two sub-functions f1 and f2, the
solutions of JANUS on these sub-functions include the 5× 2
and 3 × 4 lattices, respectively. As shown in Fig. 8a, the
lattice, that realizes the target function f = f1 + f2, is 5× 7,
where bc and br are 35 and 5, respectively. If both f1 and f2
are realized using the 4 × 3 lattice, f can be realized using
the 4 × 7 lattice as shown in Fig. 8b. Furthermore, if f1 is
realized using the 3× 4 lattice, then f can be realized using
the 3× 9 lattice as shown in Fig. 8c.

For our example in Fig. 2, the DS method finds a solution
using the 3 × 5 lattice as shown in Fig. 7f. For our example
in Fig. 6, we note that the DS method finds a solution using
the 4× 5 lattice.

In JANUS, the initial upper bound is computed as the
minimum of solutions of all these methods. Thus, the upper
bounds on our examples in Fig. 2 and 6 are computed as 15
and 20, respectively.

Observe that the methods used to compute the initial
lower and upper bounds of the search space consider a
single ISOP form of a logic function. However, a logic
function may have a number of ISOP forms with different
products. Thus, better initial lower and upper bounds can
be found when all ISOP forms are considered, but increasing
the computational effort.

3.1.2 Generation of Lattice Candidates

While exploring the search space of the LS problem in a
binary search manner, the middle point mp is computed as
b(lb+ub)/2c where lb and ub stand for the lower and upper
bound of the LS problem, respectively. As done in [15], the
set of lattice candidates C in this case is found as follows:

C =


(m,n) | m× n ≤ mp

(m+ 1)× n > mp

m× (n+ 1) > mp

∀(m′, n′) /∈ F,m′ ≥ m and n′ ≥ n

where F is a failed set which includes the row and column
of lattices on which the given target function cannot be
realized as described in the next subsection. This is based
on the fact that if it is proved that a given target function
cannot be realized using an m′ × n′ lattice, then any m× n
lattice with 1 ≤ m ≤ m′ and 1 ≤ n ≤ n′ cannot be used to
realize the target function [15].

For our example in Fig. 2, with the initial lower and
upper bounds computed as 9 and 15 in Section 3.1.1, mp
is determined as 12 and thus, the set C includes the 1× 12,
2× 6, 3× 4, 4× 3, 6× 2, 12× 1, 2× 5, and 5× 2 lattices.
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Fig. 9. The combinational circuits of f3×3 for f = abc+ abc+ abc+ bcd:
(a) when abcd = 0000 and f is low; (b) when abcd = 1000 and f is high.

3.1.3 Finding a Solution to the LM Problem
Given the function of a lattice candidate and the target
function with a minimum number of products obtained
using a logic minimization tool, both in ISOP form, initially,
the structural check, described in Section 3.1.1, is performed.
If the structural check is not passed, the row and column of
the lattice are added into the failed set F . Otherwise, we
check if there exists an assignment to the lattice function
variables included in the lattice variable LV set from the
target literal TL set, consisting of the target function literals
and constants 0 and 1, such that every entry in the truth
table of the target function is satisfied. The LM problem is
encoded as a SAT problem in three steps as follows.

1) Generate variables of the LM problem and the neces-
sary constraints related to these variables.

2) Generate constraints which ensure that the lattice func-
tion can be used to realize the target function.

3) Generate constraints which enable to reduce the com-
putational effort on the SAT solver.

In the first step of the LM problem encoding, we generate
the sets LV and TL and the mapping variables lvi_tlj ,
where lvi ∈ LV , 1 ≤ i ≤ |LV |, tlj ∈ TL, 1 ≤ j ≤ |TL|, and
|A| denotes the cardinality of set A. The mapping variable
lvi_tlj indicates that the lattice variable lvi is assigned to
an element of TL, tlj , when this mapping variable is set to
high. As an example, consider our target function f = abc+
abc+abc+ bcd in Fig. 2 when the 3× 3 lattice is used. Thus,
LV = {x1, x2, . . . , x9}, TL = {a, a, b, b, c, c, d, 0, 1}, and for
example, the mapping variable x1_a indicates that the lattice
variable x1 is assigned to a, if x1_a is set to high. Then, we
generate clauses, which confirm that each lattice variable is
assigned to only one element in TL, as follows:

|LV |∏
i=1

|TL|∑
j=1

lvi_tlj and

|LV |∏
i=1

|TL|−1∏
j=1

|TL|∏
k=j+1

lvi_tlj + lvi_tlk

where
∏

and
∑

denote AND and OR operators, respectively.
The former clauses guarantee that for each lattice variable, at
least one of the mapping variables should be high. The latter
ones ensure that for each lattice variable, when one mapping
variable is high, the other ones should be low. Note that a+b
is equal to both a ⇒ b and b ⇒ a, where ⇒ stands for the
imply operator, indicating that if one of these variables is
high, the other one should be low.

In the second step of the LM problem encoding, to
satisfy the target function, for each truth table entry, we

0
0 0

0 0
0 0

0 0 000 00

Fig. 10. Two assignments which set the lattice function to low.

1
1
1
1

1
1
1111

1

Fig. 11. Two paths between the top and bottom plates in case the target
function is high.

generate the combinational circuit corresponding to the
lattice function and assign the target function value at this
entry to the circuit output. The circuit inputs, i.e., the lattice
function variables, are associated with the truth table entry
and denoted as lvi_tte, where 1 ≤ i ≤ |LV | and tte is the
truth table entry. We obtain the POS formula of the circuit
as shown in Fig. 4 and simplify it based on the logic value
at the circuit output. For our example, Fig. 9 presents the
circuits generated for abcd = 0000 and abcd = 1000, where
the target function is 0 and 1, respectively. For the sake of
clarity, only three products of f3×3 are shown in this figure.

Observe from Fig. 9a that when the target function is low
for a truth table entry, the logic 0 at the OR gate output can
be propagated to the outputs of AND gates and thus, the
POS formula of the circuit can be reduced to the only ones
that indicate the possible ways of setting each AND gate
output to 0. For our example in Fig. 9a, the clause generated
for the AND gate at the top is x1_0000 + x4_0000 + x7_0000.
Fig. 10 presents two cases showing how a logic function is
set to a low value in a lattice. Observe that the control inputs
having a low value actually block all paths that can carry a
high value from the top plate to the bottom plate.

Observe from Fig. 9b that when the target function is
high for a truth table entry, the clauses, which ensure that if
an input of the OR gate is high, then the OR gate output
should be high, can be removed from the POS formula.
Note that, for this case, there should be at least one four-
connected path in between the top and bottom plates, where
the control inputs of associated switches are set to high.
Such paths are illustrated in Fig. 11. Based on these paths,
for the truth table entry where the target function is high,
there are two facts described as follows: i) in each row of the
switching lattice, there should be at least one switch whose
control input has a high value; ii) in each two consecutive
rows, there should be at least one situation that the control
inputs of switches on the same column have a high value.
We generate clauses for these facts to hold. These constraints
add a problem-specific knowledge into the SAT problem,
leading to a decrease in the run-time of the SAT solver.

To link the mapping variables to the circuit inputs, for
each mapping variable, we generate clauses which ensure
that when a mapping variable is set to high, the associ-
ated circuit input, i.e., a lattice variable, is set to a value
determined by the truth table entry. For our example, when
abcd = 0000, the constraints, such as x1_a⇒ x1_0000 and
x3_b⇒ x3_0000, ensure that the circuit input has the corre-
sponding value when a lattice variable is assigned to a target
literal. When a lattice variable is assigned to a constant value
0 or 1, the related circuit input is set to that value.
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In the third step of the LM problem encoding, if the
degree of the target function, denoted as δ, is equal to that
of the lattice function, for each product with δ literals in
the target function, we generate clauses indicating that at
least one of the products with δ variables in the lattice
function should be used to realize this product. Consider the
realization of f = bcd+ abcde on the 3×3 lattice, where δ is
5. It is obvious that the product x1x4x5x6x9 or x3x6x5x4x7
of f3×3 should realize abcde. Among many possibilities,
this can be achieved by setting the mapping variables x1_a,
x4_b, x5_c, x6_d, and x9_e to high. Moreover, it was noticed
that realizing products with a large number of literals in the
lattice is a hard task. Hence, if a product of a target function
has more than 5 literals (determined empirically), we also
generate clauses which ensure that this product is realized
by at least one product with more than 5 variables in the
lattice function.

Thus, a SAT problem, that formalizes the LM problem, is
generated based on the target and lattice functions. We also
consider the realization of the dual of target function using
the dual of given lattice function and generate another SAT
problem using a formulation similar to the one given above.
This is due to the fact that the dual of lattice function may
have a smaller number of products than that of the lattice
function as shown in Table 1 and the dual of target function
may have a smaller number of truth table entries where
the target function is high, yielding a SAT problem with
a small number of variables and clauses. After generating
the alternative SAT problem, we choose the one that has
the least complexity computed as the number of variables
times the number of clauses and then, solve it using a SAT
solver. Since it is easier for the SAT solver to find a solution
if it exists than to prove that there is no solution, we set
a time limit as 1200 seconds, determined empirically. Thus,
if the SAT solver finds a solution in the given time limit,
the assignment to the lattice variables is obtained by the
mapping variables set to high. Otherwise, it is accepted
that the target function cannot be realized using the given
lattice. If it is proven that the given lattice cannot be used
to realize the target function in the given time limit, the row
and column of the lattice are added into the failed set F .

3.1.4 SAT Problem Complexity
In order to show the increase in the complexity of the SAT
problem generated by JANUS as the number of literals and
products in a target function and the lattice size increase,
we consider the logic function of an r-input XOR gate,
denoted as r-XOR. Note that r-XOR includes all possible
2r literals and consists of 2(r−1) products, each having r
literals. Fig. 12 presents the number of variables and clauses
(in the logarithmic scale) of the SAT problems generated for
r-XOR on m × n lattices where r varies in between 4 and 7
and m and n range in between 3 and 7.

Observe from Fig. 12 that the complexity of the SAT
problem increases dramatically as the number of inputs in
the XOR logic function, and consequently, the number of
products, increase. For example, the SAT problem, which is
generated to check if 6-XOR (7-XOR) can be realized using
the 7 × 7 lattice, includes 1,532,826 (3,355,090) variables
and 30,031,338 (65,576,998) clauses. It is important to note
that the SAT problem complexity may reach to a point

(a)

(b)

Fig. 12. Complexity of SAT problems on XOR functions: (a) number of
variables; (b) number of clauses.

that is beyond the capabilities of state-of-art SAT solvers.
Moreover, the SAT problem complexity increases as the
lattice size increases because the number of products and
degree of the lattice function increase as shown in Tables 1
and 2. For example, for 7-XOR to be realized using the
6 × 6 (7 × 6) lattice, the SAT problem has 220,866 (844,372)
variables and 3,016,945 (13,808,368) clauses. This analysis
clearly indicates that the performance of JANUS depends
heavily on the number of literals and products of the target
function and lattice size. This also points out the importance
of improving the initial upper bound because JANUS may
need to solve large size SAT problems otherwise.

Although there are logic functions with a small number
of products and literals that JANUS can handle easily, there
are still complex instances that it may find them hard to
solve as shown in Fig. 12. Hence, an algorithm, that can
easily cope with such logic functions, is needed.

3.2 MEDEA: A Divide and Conquer Algorithm
The divide and conquer method, called MEDEA, aims to
realize complex logic functions using a little computational
effort. Its main steps are given as follows:

1) Recursively partition a large number of products in a
single function into sub-functions with a small number
of products such that they can be handled by JANUS.

2) Find the realizations of these sub-functions using JANUS
and merge these lattices into a single lattice.

3) Explore alternative realizations of these sub-functions
such that the final lattice requires a small number of
switches.
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In the first step, the logic function and also, the sub-
functions to be generated are recursively partitioned into
two sub-functions if the difference between the upper and
lower bounds of the function, denoted as dulb, is greater
than or equal to 31. We note that the lower and upper
bounds of a function are computed as described in Sec-
tion 3.1.1, except the DS method is not used while com-
puting the upper bound. As an example, assume that a
target function f is initially partitioned into sub-functions as
f = f1 + f2. Then, the sub-function f2, denoted as g, which
has a dulb value greater than or equal to 31, is decomposed
as g = g1 + g2. Finally, the sub-function g2, denoted as
h, which has a dulb value greater than or equal to 31, is
divided into sub-functions as h = h1 + h2. Thus, the target
function is written as f = f1 + g1 + h1 + h2, where the sub-
functions f1, g1, h1, and h2 have a dulb value less than 31.
While determining the dulb value, we considered two main
criteria. First, the sub-functions having the determined dulb
value should lead to SAT problems which can be solved
easily using the state-of-art SAT solvers, and thus, they can
be easily handled by JANUS. Second, these sub-functions
should yield a final lattice with a small size. However,
these criteria conflict with each other as also shown in our
experiments. It is observed that a large (small) dulb value
leads to a small (large) number of sub-functions with a
large (small) number of products whose realizations can be
found using a great (little) computational effort and which
are merged into a small (large) size single lattice. Thus, the
dulb value is determined to be 31 based on experiments,
meeting these two criteria adequately.

In its second step, as done in the DS method, JANUS
is used to find the realizations of these sub-functions on
lattices. These lattices are added into a single lattice, sepa-
rating each one of them by an isolation column and filling
the unspecified entries by constant 1 as shown in Fig. 8a.

In its third step, as done in the DS method, the possible
realizations of each lattice with a small number of rows and
columns are explored and the one that can reduce the final
lattice size is chosen to replace the current one.

We note that the run-time limit for the SAT solver used
in the second and third steps of MEDEA is set to 300 seconds
to reduce the computational effort.

3.3 Realization of Multiple Functions
The proposed algorithms, which realize a single logic func-
tion using a switching lattice, can be used to realize multiple
functions on a single lattice as follows:

1) Find the realization of each logic function using one of
the proposed algorithms.

2) Merge these realizations into a single lattice.
3) Find alternative realizations of these functions that can

reduce the final lattice size.
Based on the algorithm used to find the realization of

each function on a switching lattice, i.e., JANUS or MEDEA,
the developed algorithms are called as JANUS-MF and
MEDEA-MF, respectively.

As an example, consider the functions of a full adder,
where cout(a, b, cin) =

∑
(3, 5, 6, 7) which can be written

as cout = ab + acin + bcin and s(a, b, cin) =
∑

(1, 2, 4, 7)
which can be written as s = abcin + abcin + abcin + abcin.

(b)
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1
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Fig. 13. Realizations of a full adder in a single lattice: (a) 3× 7 (b) 3× 6.

Fig. 13a presents the 3× 7 switching lattice which is formed
by merging the realizations of these functions that are found
using JANUS. However, in its third step, JANUS-MF finds
that the cout function can also be realized using the 3 × 2
lattice which reduces the final lattice size to 18 as shown in
Fig. 13b. Note that the associated outputs can be pinned out
at the switch-level as illustrated in Fig. 13.

4 EXPERIMENTAL RESULTS

In this section, we present the results of JANUS, MEDEA, and
the methods of [15], [16], [19]. Note that JANUS and MEDEA,
developed in Perl, use espresso [28] as a logic minimization
tool to find the ISOP forms of logic functions and their duals,
glucose4.1 [29] to solve a SAT problem, and SCIP2.1 [30]
to solve a 0-1 ILP problem. The proposed algorithms can
be found at https://github.com/leventaksoy/Lattices. We
used the updated version of the exact method of [15] where
an issue, that may cause the method to miss some paths
in a switching lattice, was fixed [19]. The results of the
method [16] were obtained using a developed tool that can
find the lattice realizations of sub-functions decomposed by
the algorithm of [31] and can merge these realizations into
a single lattice. Note that the decomposed sub-functions of
logic functions used in our experiments were provided by
Luca Frontini and were obtained in less than a second. As
done in [16], in the developed tool, the time limit for the
SAT solver was set to 600 seconds and for the sub-functions
whose solutions could not be found by the exact algorithm
of [15], the DP method [11] was used. All the algorithms
were run on an Intel Xeon CPU at 2.40GHz with 28 cores
and 128GB RAM with the CPU time limit of 6 hours.

In order to show the complexity of generated SAT
problems and the performance of the SAT solver on these
problems, two moderate logic functions, i.e., b12_06 and
mp2d_02, were used. Note that the number of inputs, prime
implicants, and the degree of the b12_06 (mp2d_02) function
is 9 (11), 9 (10), and 6 (4), respectively. Tables 3 and 4 present
the results on the SAT problem complexity in terms of the
number of variables and clauses where decision and CPU
are the answer and run-time of the SAT solver in seconds,
respectively. Note that while the decision sat(unsat) denotes
that the target function can(not) be realized using the given
lattice, undet indicates that the SAT solver cannot make a
decision in the given time limit. The lattices given in these
tables are the ones in between the lower and upper bounds
computed as described in Section 3.1.1, each passing the
structural check as mentioned in Section 3.1.3. Note also
that the lattices given in italic indicate that the complexity
of the SAT problem generated based on the dual of target
and lattice functions is less than that of the SAT problem
generated based on the target and lattice functions.

Observe from Tables 3 and 4 that the complexity of the
SAT problem differs on the lattices with the same size, e.g.,
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TABLE 3
Complexity of SAT problems on the b12_06 instance.

lattice #variables #clauses decision CPU
3x5 10656 150025 unsat 0.4
5x3 11840 168151 unsat 1.2
4x4 12240 171962 unsat 8.5
3x6 13272 186363 unsat 0.5
6x3 16876 245351 unsat 6.5
4x5 17056 239345 unsat 146.0
5x4 19360 276153 sat 2.4
3x7 16040 225047 unsat 1.0
7x3 25580 391541 unsat 30.9

TABLE 4
Complexity of SAT problems on the mp2d_02 instance.

lattice #variables #clauses decision time
4x7 81308 4508304 sat 861.1
3x10 306120 2607947 sat 27.6
5x6 83822 4213051 sat 901.0
6x5 77142 3178046 undet 1200.0
10x3 64528 1276710 unsat 1.2
4x8 136722 11139857 sat 526.4
8x4 79596 2935943 unsat 78.0

the SAT problems generated for the 3 × 10, 5 × 6, 6 × 5,
and 10× 3 lattices on the mp2d_02 instance. This is mainly
due to different number of products and degree of the lattice
function as shown in Tables 1 and 2. Moreover, having a SAT
problem with a small complexity does not always mean that
it will be solved using a little computational effort, e.g., the
SAT problems generated for the 4×5 and 7×3 lattices on the
b12_06 instance. This is related to the number of products
and the number of literals in products of both target and
lattice functions. Furthermore, observe that the complexity
of SAT problems generated for the mp2d_02 instance is
larger than that of SAT problems generated for the b12_06
instance. This is mainly because the number of inputs of the
mp2d_02 instance and the sizes of lattices checked for this
function are larger than those in the b12_02 instance.

In order to compare the performance of algorithms, we
used 48 instances presented in [20]. Table 5 shows the results
of algorithms where lb stands for the lower bound found
as described in Section 3.1.1, oub is the old upper bound
computed based on the DP, PS, and DPS methods [19], nub
is the new upper bound found considering also the solutions
of the IPS, IDPS, and DS methods, and lubt denotes the time
required for the computation of the initial lower and upper
bounds in seconds. Finally, sol and CPU denote the solution
and run-time of algorithms in seconds, respectively.

Observe from Table 5 that the use of new methods intro-
duced for finding an upper bound improves the existing
upper bound of [19] by 42.8% on average using a little
computational effort, reducing the search space of the LS
problem significantly. Note that while the DP, PS, and DPS
methods find a smaller upper bound on only one instance
than other methods, the proposed IPS, IDPS, and DS meth-
ods lead to better upper bounds on 39 instances than other
methods. Observe also that the new upper bound can be
better than the solutions of existing methods proposed for
the LS problem, e.g., 5xp1_3.

Observe from Table 5 that JANUS can find better solu-
tions in terms of lattice size than the exact algorithm of [15],
e.g., ex5_15, ex5_17, and ex5_24. This is simply because it
explores a small search space due to the improved upper
bounds and it encodes the LM problem as a SAT problem
efficiently. Also, JANUS can find solutions with the same size
as the exact algorithm, but using less computational effort,

e.g., ex5_23, mp2d_02, and mp2d_04. Although JANUS does
not consider all ISOP forms of a logic function while finding
the initial lower and upper bounds of the LS problem as
described in Section 3.1.1, its solutions are never worse than
the exact ones. Furthermore, the solutions of JANUS are bet-
ter or equal to those found by the existing algorithms, hav-
ing the smallest lattice size on average. Moreover, MEDEA
can find solutions using a little computational effort with
respect to other algorithms except the method of [16], e.g.,
5xp1_3, ex5_23, and mp2d_01, and its solutions are better
than those of the existing approximate algorithms and close
to those of the exact algorithm and JANUS on average. On
the other hand, the strict rules on the realization of a product
in the approximate method of [15] yield the worst solutions
on instances ex5_15, ex5_17, and ex5_23. The solutions of the
method [19] may be far away from the optimal, e.g., 5xp1_3,
ex5_24, and mp2d_01, since it does not consider all possible
lattice candidates. The method of [16] finds solutions using
the least computational effort on average, but its solutions
are worse than those of other algorithms on average.

Tables 6 and 7 respectively present the ratio of CPU
times required by the tools and methods used in JANUS
and MEDEA over their total run-time given in percentage
on instances in Table 5. Observe from these tables that while
the run-time of JANUS is dominated by solving LM problems
formulated as SAT problems, the run-time of MEDEA is
dominated by finding lattice realizations using JANUS.

In order to explore the limitations of algorithms [15], [19]
and JANUS, we used 12 logic functions taken from the LGS91
benchmark [32]. Table 8 presents the results of algorithms
where #in, #pi, and δ denote the number of inputs, prime
implicants, and degree of the target functions in ISOP form,
respectively. Since the methods of [15], [19] cannot find a
solution on these instances in the given time limit, i.e., 6
hours, their CPU time is not listed to avoid repeated values.

We note that the initial upper bound of the LS problem
for each instance given in Table 8 is found by the DS method,
leading to a 73.6% reduction on average when compared
to the old upper bound computed by the DP, PS, and DPS
methods. Observe that the found upper bound is better than
the solutions of the algorithms [15], [16], [19] on average.
However, the DS method cannot find the upper bound in the
given time limit on two instances, i.e., sao2_01 and sao2_03.

Observe from Table 8 that the algorithms [15], [19] and
JANUS find these instances hard to solve. While all solutions
of the method [19] are equal to the initial upper bound, the
methods of [15] can only improve the initial upper bound
value on the inc_03 and rd53_01 instances. There is only
one function, i.e., inc_03, that JANUS can find a solution in
a given time limit. Observe that JANUS cannot improve the
initial upper bound of any instance. However, it can find
significantly better solutions than the algorithms [15], [19]
which is due to the DS method used to find an initial upper
bound. On the other hand, the method of [16] can find better
solutions than the algorithms of [15], [19], i.e., all instances
except apex4_18 and sao2_01. This is because while the de-
composed sub-functions can be solved by the exact method
of [15], the whole functions are hard to solved by the exact
method. However, the solutions of [16] are worse than those
of JANUS and MEDEA on average. Moreover, the solutions of
MEDEA are obtained using the least computational effort on
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TABLE 5
Summary of initial lower and upper bounds and results of algorithms on moderate single functions.

Instance Lower and Upper Bounds [16] [19] Approximate [15] Exact [15] JANUS MEDEA
lb oub nub lubt sol CPU sol CPU sol CPU sol CPU sol CPU sol CPU

5xp1_1 16 105 32 4.1 5x10 4.2 5x5 501.2 6x5 21600 5x5 21600 4x6 2023.2 4x8 2.2
5xp1_3 15 135 40 57.3 4x11 11.1 5x27 21600 11x4 21600 11x4 21600 4x9 19745.8 5x8 55.8
b12_00 9 24 20 0.2 4x3 0.8 4x3 0.3 4x3 0.6 4x3 2.1 4x3 0.3 4x3 0.3
b12_01 12 35 20 0.2 4x4 2.5 4x4 1.1 4x4 1.6 5x3 8.5 5x3 1.1 5x3 1.2
b12_02 12 42 24 0.8 5x8 3.4 4x4 5.7 5x4 3.7 4x4 35.4 4x4 4.1 4x4 3.4
b12_03 6 6 6 0.1 2x5 0.1 3x2 0.1 3x2 0.2 3x2 0.1 3x2 0.1 3x2 0.1
b12_06 15 44 24 4.3 5x10 22.6 5x4 23.8 5x4 4.6 5x4 139.3 5x4 23.8 5x4 23.8
b12_07 16 24 24 0.3 4x8 0.1 3x6 1.1 5x4 2.5 3x6 5.4 3x6 1.5 3x6 0.2
c17_01 6 6 6 0.1 2x5 0.1 3x2 0.1 3x2 0.2 3x2 0.1 3x2 0.1 3x2 0.1
clpl_00 12 16 15 0.2 4x7 0.2 3x4 0.4 3x4 0.3 3x4 1.3 3x4 0.3 3x4 0.2
clpl_03 16 36 24 0.6 6x9 6.6 3x6 19.6 3x6 2.3 3x6 200.0 3x6 84.9 3x6 20.6
clpl_04 15 25 18 0.3 5x8 1.1 3x5 5.0 3x5 1.3 3x5 25.3 3x5 1.3 3x5 1.0
dc1_00 9 16 15 0.2 4x4 0.2 3x3 0.1 3x3 0.4 3x3 0.4 3x3 0.2 3x3 0.2
dc1_02 12 16 15 0.2 3x5 0.1 3x4 0.1 3x4 0.3 4x3 0.2 4x3 0.3 4x3 0.2
dc1_03 9 20 18 0.2 4x5 0.1 4x3 0.2 4x3 0.4 4x3 0.5 4x3 0.3 4x3 0.3
ex5_06 16 32 24 0.3 3x10 0.2 3x6 1.2 3x7 12.0 3x6 7.2 3x6 2.1 3x6 0.5
ex5_07 24 40 27 0.7 3x13 0.2 4x6 19.7 3x9 332.2 4x6 473.2 3x8 2.5 4x6 29.3
ex5_08 20 21 21 0.2 3x9 1.5 3x7 0.0 3x7 9.3 3x7 51.2 3x7 7.2 3x7 0.2
ex5_09 24 40 30 12.3 3x11 6.1 4x6 5.7 3x8 108.2 4x6 454.6 3x8 17.6 3x8 12.4
ex5_10 16 21 21 0.2 3x9 0.2 3x6 0.7 3x6 1.4 3x6 3.8 3x6 0.5 4x5 0.2
ex5_12 15 25 20 0.2 4x11 3.8 3x5 1.8 3x5 1.7 3x5 13.7 3x5 12.6 3x5 15.6
ex5_13 24 36 27 0.9 3x13 0.1 3x8 10.0 4x6 57.6 4x6 190.2 3x8 2.8 4x6 4.0
ex5_14 16 16 16 0.2 3x11 0.1 2x8 0.9 2x8 1.2 2x8 6.7 2x8 0.2 2x8 0.3
ex5_15 20 72 33 3.1 4x13 2.2 4x7 48.5 6x12 21600 6x5 21600 3x8 2562.4 3x11 5.4
ex5_17 20 105 42 23.2 4x13 21.6 4x7 1425.6 10x6 21600 6x6 21600 3x9 4377.6 4x10 29.1
ex5_19 16 18 18 0.1 3x8 0.1 3x6 1.4 3x6 1.1 3x6 6.9 3x6 0.4 3x6 0.2
ex5_21 20 57 30 0.5 3x11 9.1 3x7 8.2 4x7 1364.6 3x7 280.9 3x7 790.8 3x7 411.0
ex5_22 16 33 21 0.2 3x8 1.8 3x6 1.3 3x6 2.0 3x6 8.4 3x6 1.2 3x6 2.4
ex5_23 24 92 36 39.0 4x11 13.2 4x8 2465.0 11x5 21600 3x9 15418.6 3x9 3726.4 3x12 29.9
ex5_24 20 105 33 7.0 5x14 29.3 15x7 21600 3x11 21600 4x7 21600 3x8 1638.8 3x13 2.6
ex5_25 20 40 27 0.3 4x10 2.0 3x7 16.4 3x7 6.4 3x7 79.4 3x7 152.7 3x7 7.1
ex5_26 20 57 30 0.7 3x13 7.8 3x7 12.9 3x9 384.5 3x7 238.5 3x7 36.3 3x7 43.8
ex5_27 20 77 27 1.3 4x11 7.8 4x6 58.1 3x8 1049.5 4x6 1561.3 3x8 1229.3 3x9 1.7
ex5_28 24 27 27 0.2 3x11 6.0 3x8 5.3 3x8 180.2 6x4 51.5 3x8 1.6 3x8 1.9
misex1_00 6 8 8 0.1 4x3 0.1 4x2 0.1 4x2 0.2 4x2 0.2 4x2 0.1 4x2 0.2
misex1_01 12 35 18 0.2 5x5 0.9 3x5 1.9 4x4 1.7 3x5 7.4 3x5 1.1 3x5 1.4
misex1_02 12 40 25 0.4 5x5 1.4 5x4 24.0 5x4 4.6 5x4 50.9 5x4 19.7 5x4 23.7
misex1_03 9 28 20 0.3 4x6 0.3 4x3 0.9 5x3 1.2 4x3 3.9 4x3 0.5 4x3 0.4
misex1_04 12 25 18 0.2 4x6 0.1 3x4 0.2 5x3 1.0 3x4 0.7 3x4 0.4 3x4 0.4
misex1_05 12 42 21 0.3 4x6 0.7 4x4 4.6 5x4 4.9 4x4 13.4 4x4 2.1 4x4 3.8
misex1_06 12 35 18 0.2 5x6 0.8 5x3 1.3 5x3 1.6 5x3 4.7 5x3 1.3 5x3 1.7
misex1_07 9 20 18 0.3 4x6 0.2 4x3 0.7 5x3 1.0 4x3 1.6 4x3 0.5 4x3 0.5
mp2d_01 24 48 30 4.3 4x11 0.9 5x7 28.7 4x7 291.3 3x9 6478.3 3x9 3257.3 4x8 0.3
mp2d_02 28 50 33 0.9 4x13 0.4 4x9 33.9 4x7 730.7 4x7 4580.7 4x7 948.9 3x10 0.3
mp2d_03 15 72 32 4.5 7x6 19.8 5x5 42.3 4x6 188.2 6x4 1322.7 4x6 271.2 4x8 5.5
mp2d_04 15 57 36 5.5 7x3 184.2 7x3 18.9 7x3 58.8 7x3 3043.1 7x3 286.8 7x3 299.4
mp2d_06 8 18 16 0.3 5x4 0.3 6x2 0.3 7x2 1.2 4x3 1.1 6x2 0.4 6x2 0.2
newtag_00 16 32 24 0.2 3x8 1.4 3x6 2.7 3x6 2.1 3x6 19.0 3x6 2.2 3x6 0.2
Average 15.5 41.1 23.5 3.7 32.4 7.9 22.7 1000.0 22.0 2800.4 18.9 2974.8 18.3 859.2 19.9 21.8

TABLE 6
Summary of percentage of CPU times of tools in run-time of JANUS.

Logic Minimization SAT Problem Solving
espresso [28] glucose [29]

0.03 99.16

TABLE 7
Summary of percentage of CPU times of tools in run-time of MEDEA.

Logic Minimization Lattice Realization
espresso [28] JANUS

0.8 97.35

average and they are better than those of all algorithms on
average, except those of JANUS.

In order to show the tradeoff between the solution
quality and run-time in MEDEA, on the instances given in
Table 8, the dulb value, which is used while partitioning a
logic function into two sub-functions, is changed from 11 to
51, in step of 10. These results are shown in Table 9 where
#sf denotes the number of generated sub-functions.

Observe from Table 9 that as the dulb value increases,
the number of sub-functions is decreased, increasing the
solution quality and the run-time of MEDEA. Note that while
there is a 36.3% reduction in the average lattice size, there
exists a 23.8x increase in the average run-time when the
results obtained with the dulb value 11 and 51 are compared.

Observe from Table 8 that the solutions of MEDEA obtained
for all dulb values are better than the old initial upper bound
values and those of the methods [15], [16], [19] on average.

In order to show the limitations of JANUS and to demon-
strate the importance of MEDEA, we used 15 logic functions
taken from the LGS91 benchmark [32]. Table 10 presents
the details of logic functions, the initial lower bound of
the search space and its upper bounds found by different
methods, and the results of algorithms. Note that the lower
and upper bounds were computed in less than a second.
However, the algorithms of [15], [16], [19] and JANUS cannot
handle these instances in the given time limit, i.e., 6 hours,
and can only return a solution obtained by the techniques
used to find the initial upper bounds of the LS problem.
The DS method of JANUS could not find a solution on any
of these instances in the given time limit. All solutions of
the method [16] were found using the DP method [11] on
the decomposed sub-functions since the exact algorithm
of [15] could not handle these sub-functions. In this table,
size stands for the number of switches in the lattice.

Observe from Table 10 that on each logic function, the
proposed IPS and IDPS methods give an upper bound
which is significantly better than that found by the pre-
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TABLE 8
Summary of initial lower and upper bounds and results of algorithms on hard single functions.

Instance Function Details Lower and Upper Bounds [16] [19] App. [15] Exact [15] JANUS MEDEA
#in #pi δ lb oub nub lubt sol CPU sol sol sol sol CPU sol CPU

apex4_15 9 13 8 18 186 50 4435.9 4x19 8520.1 31x6 8x25 8x25 5x10 21600 5x11 16.7
apex4_16 9 11 8 18 168 48 5340.6 5x11 2742.5 8x21 8x21 8x21 4x12 21600 5x12 14.2
apex4_17 9 12 8 18 184 49 1615.6 4x22 7419.7 8x23 8x23 8x23 7x7 21600 5x15 8.6
apex4_18 9 14 8 20 215 56 4090.7 22x14 21600 43x5 8x27 8x27 7x8 21600 6x13 859.4
clip_00 9 21 6 18 246 55 4249.7 5x14 341.5 6x41 6x41 6x41 5x11 21600 5x16 26.5
clip_04 9 20 6 18 234 44 1407.2 5x10 146.7 6x39 6x39 6x39 4x11 21600 4x13 14.9
inc_03 7 11 5 15 105 36 43.0 6x8 37.4 5x21 19x3 19x3 4x9 15023.7 4x11 2.6
rd53_01 5 16 5 18 155 44 53.2 4x11 16.5 5x31 9x9 9x5 4x11 21600 4x11 52.5
sao2_01 10 20 10 24 390 84 21600 25x17 21600 10x39 10x39 10x39 12x7 21600 8x18 1979.0
sao2_02 10 22 4 21 161 52 5649.2 5x15 266.8 23x7 4x43 4x43 4x13 21600 4x18 11.3
sao2_03 10 21 5 24 168 70 21600 5x14 3495.2 21x8 5x41 5x41 5x14 21600 5x18 200.0
z5xp1_03 7 18 6 18 210 50 6850.6 6x10 309.6 6x35 6x35 6x35 5x10 21600 4x18 9.3
Average 8.5 16.4 6.5 18.8 196.7 53.2 6411.3 114.1 5541.3 201.8 196.9 193.9 53.2 21052.0 72.2 266.2

TABLE 9
Summary of results of MEDEA with different dulb values on hard single functions.

Instance dulb = 11 dulb = 21 dulb = 31 dulb = 41 dulb = 51
#sf sol CPU #sf sol CPU #sf sol CPU #sf sol CPU #sf sol CPU

apex4_15 5 5x17 6.9 4 5x14 7.6 3 5x11 16.7 3 5x11 16.5 3 5x11 16.3
apex4_16 6 4x22 7.7 3 5x12 14.0 3 5x12 14.2 3 5x12 14.3 2 4x13 2650.2
apex4_17 5 6x15 7.4 4 5x15 10.2 4 5x15 8.6 4 5x15 8.5 3 6x11 1555.5
apex4_18 6 6x17 7.8 4 6x13 857.1 4 6x13 859.4 3 6x11 1045.8 3 6x11 1040.3
clip_00 7 4x26 4.4 4 5x16 26.6 4 5x16 26.5 4 5x16 26.8 4 5x16 26.2
clip_04 7 4x22 2.8 6 4x20 2.7 3 4x13 14.9 3 4x13 14.7 3 4x13 14.4
inc_03 4 4x14 1.6 4 4x14 1.6 3 4x11 2.6 2 4x9 50.2 2 4x9 50.0
rd53_01 4 4x15 1.9 4 4x15 1.7 2 4x11 52.5 2 4x11 52.2 2 4x11 52.2
sao2_01 11 8x32 356.8 6 8x20 1558.1 5 8x18 1979.0 4 8x15 2138.7 4 8x15 2132.4
sao2_02 8 4x23 3.5 6 4x20 8.2 4 4x18 11.3 4 4x18 10.9 2 4x13 2031.0
sao2_03 11 13x8 5.5 6 5x20 22.3 4 5x18 200.0 4 5x18 199.0 4 5x18 198.3
z5xp1_03 8 4x27 3.0 6 4x23 4.4 4 4x18 9.3 4 4x18 9.0 4 4x18 9.1
Average 6.8 102.8 34.1 4.8 82.6 209.6 3.6 72.2 266.2 3.3 68.5 298.9 3.0 65.4 814.6

TABLE 10
Summary of initial lower and upper bounds and results of algorithms on very hard single functions.

Instance Function Details Lower and Upper Bounds [16] [19] [15] JANUS MEDEA
#in #pi δ lb DP PS DPS IPS IDPS sol sol sol sol sol size CPU

alu4_02 14 50 6 24 2000 594 553 450 413 25x54 79x7 6x99 59x7 5x36 180 164.2
alu4_03 14 72 7 24 5184 1001 1001 749 749 56x73 143x7 7x143 107x7 5x64 320 850.1
alu4_05 14 90 9 24 8100 1611 1611 1224 1224 90x93 179x9 9x179 136x9 5x121 605 2736.0
alu4_06 14 36 7 20 1296 497 497 385 385 36x36 71x7 7x71 55x7 5x35 175 1285.0
apex4_01 9 33 9 20 1221 585 438 441 330 28x35 73x6 9x65 55x6 6x36 216 214.5
apex4_02 9 71 9 24 5183 1269 1305 954 981 47x75 9x141 9x141 9x106 6x74 444 3146.6
apex4_03 9 69 9 24 4761 1233 1096 927 824 47x69 137x8 9x137 103x8 6x78 468 1094.0
apex4_04 9 76 9 24 5624 1359 1176 1017 888 45x81 147x8 9x151 111x8 6x96 576 1583.4
apex4_05 9 78 9 25 5928 1395 1359 1044 1017 48x84 151x9 9x155 113x9 6x92 552 1196.8
apex4_06 9 76 8 24 5700 1208 1341 912 1008 46x85 8x151 8x151 8x114 5x112 560 1862.0
apex4_07 9 75 9 24 5400 1341 1144 1008 864 46x79 143x8 9x149 108x8 6x89 534 975.2
apex4_08 9 76 8 24 5700 1208 1192 912 904 46x84 149x8 8x151 113x8 6x87 522 2758.3
apex4_09 9 72 8 24 5472 1144 1208 864 920 45x75 8x143 8x143 8x108 5x104 520 275.4
apex4_10 9 74 9 24 4884 1323 1048 990 800 41x79 131x8 9x147 100x8 5x98 490 761.6
z9sym 9 84 6 24 6048 1002 1001 774 749 34x112 143x7 6x167 107x7 5x112 560 1938.7
Average 10.3 23.5 8.1 23.5 4833.4 1118.0 1064.7 843.4 803.7 3490.6 1049.1 1118.0 791.8 448.1 448.1 1389.4

viously proposed methods. Although the method of [16]
improves the solution of the DP method [11] on the whole
logic function on average by finding the realizations of the
decomposed sub-functions using the DP method [11], its
solutions are still worse than those of the IPS and IDPS
methods. On the other hand, MEDEA finds significantly
better solutions using a little computational effort than the
available methods, yielding a 43.4% decrease in the lattice
size on average when compared to JANUS. This experiment
clearly indicates that MEDEA is crucial especially on logic
functions that the existing algorithms cannot handle.

Observe from Table 10 that since the methods of [15],
[16], [19] and JANUS include QBF-and SAT-based techniques
to solve the LM problem, i.e., to determine if a logic function
can be realized using a given switching lattice, and the LM
problem is an NP-complete problem, there exist instances
that these methods find them hard to solve and even cannot
handle. However, MEDEA can be applied to a logic function
with a large number of inputs and products since it parti-
tions this function into sub-functions with a small number of
inputs and products which can be easily handled by JANUS.

TABLE 11
Summary of results of algorithms on multiple functions.

Instance #out straight-forward method JANUS-MF
sol size CPU sol size CPU

b12 9 5x46 230 37.6 4x45 180 2451.8
bw 28 5x119 595 12.7 3x135 405 14.1
misex1 7 5x31 155 25.3 3x42 126 30.4
squar5 8 5x31 155 31.7 3x36 108 59.7

Finally, Table 11 presents the results on instances in-
cluding multiple functions. In this table, #out denotes the
number of outputs of given instances and the straight-
forward method applies JANUS on each target function and
merges its solutions into a single lattice, i.e., first two steps
of the algorithm developed for the realization of multiple
functions described in Section 3.3.

Observe from Table 11 that JANUS-MF outperforms
the straight-forward method where the maximum gain is
achieved as 32% on the bw instance. This is simply due
to the impact of Step 3 of the algorithm as mentioned
in Section 3.3, i.e., finding alternative realizations of logic
functions. Note that JANUS finds a realization of a logic
function without considering that all the realizations of logic
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Fig. 14. Sharing common products using multiple lattices.

functions will be merged in a single lattice. However, it aims
to a find a small size lattice realizing a logic function. Hence,
taking the complexity of these realizations into account, in
the Step 3 of the algorithm, JANUS-MF explores different
realizations of logic functions systematically and tries to
reduce the size of the final lattice as shown in Fig. 8. We also
note that MEDEA-MF finds the same results of JANUS-MF,
except the squar5 instance, where its solution, found in 7
seconds, includes a 3× 40 lattice.

5 CONCLUSIONS AND FUTURE WORK

This article addresses the problem of realizing a logic func-
tion on a switching lattice using a minimum number of
four-terminal switches and introduces two algorithms called
JANUS and MEDEA. While JANUS is developed for finding
a solution close to the minimum, MEDEA is proposed to
handle the instances, that JANUS finds them hard to solve,
using a little computational effort. This article also intro-
duces methods that can reduce the initial lower and upper
bounds of search space, leading to significant reductions in
run-time. Moreover, it presents an efficient SAT formulation
of the problem of checking if a given target function can
be realized using the given switching lattice. Furthermore,
this article describes how multiple functions can be realized
on a single lattice efficiently. Experimental results show that
while JANUS can find significantly better solutions than ex-
isting exact and approximate algorithms, MEDEA can easily
obtain solutions on relatively large size instances that JANUS
and other exact and approximate algorithms cannot handle
and its solutions can be better than those of the previously
proposed algorithms.

In the realization of multiple functions, the lattice size
can be further reduced by sharing the common products,
which can be achieved using multiple lattices. As an illustra-
tive example, consider the target functions f and g, where
h denotes the function including the common products of
these functions, fh and gh stand for the functions gener-
ated after the products of h are extracted from f and g,
respectively such that f = h + fh and g = h + gh. Fig.14
shows the realizations of multiple functions f and g. Rather
than the common products, the common logic expressions,
which can be found using a state-of-art logic synthesis
tool, can also be utilized as done for the realization of a
single function in [18]. However, although this technique
may reduce the number of switches due to the sharing,
it may increase the total area due to the connecting wires
between the lattices. Hence, rather than the optimization of
the number of four-terminal switches, the optimization of
area of the whole design can be considered in this case.

Moreover, since there exist alternative realizations of a
logic function using different switching lattices, each having

a different area, delay, and power dissipation values, algo-
rithms, that take into account the area, delay, and power
dissipation of the design, can also be developed.
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