EHB262E Electronics II Homework 3

Deadline: 20/12/2012 (before the lecture)

Transistor	L (µm)	<i>W</i> (µm)
M_1	1	50
M_2	1	50
M_3	1	20
M_4	1	20

Differential Amplifier with Ideal Current Sources

Consider a differential amplifier shown above. Replace the ideal current sources with the transistor-level current sources shown below, so you have a differential amplifier with 7 transistors and a resistor. Answer all the following questions considering this amplifier.

Assume that all MOSFETs are operating in saturation region. Also assume that input and output DC operating points are all **zero**. Transistors have the following parameters: $k_p = \mu_p c_{ox} = 45 \text{A/V}^2$, $k_n = \mu_n c_{ox} = 80 \text{A/V}^2$, $V_{\text{An}} = 500$, $V_{\text{Ap}} = 50 \text{V}$, $V_{\text{T0,p}} = -0.9 \text{V}$, $V_{\text{T0,p}} = 1 \text{V}$.

Transistor	<i>L</i> (µm)	$W(\mu m)$
M_5	1	10
M_6	1	20
M_7	1	20

Current Sources in Transistor-level

- a) Calculate the small signal differential gain $v_{out} / (v_{in1}, v_{in2})$.
 - Assume that I_1 =10A and I_2 =5A.
- b) Calculate the small signal common-mode gain v_{out}/v_{in} where $v_{in1} = v_{in2} = v_{in}$. • Assume that $I_1 = 10$ A and $I_2 = 5$ A.
- c) Calculate CMRR.

d) To verify your calculated result, find $v_{out} / (v_{in1}, v_{in2})$, v_{out} / v_{in} , and CMRR using SPICE.

- Use FDR840P and FDR6580 SPICE models for PMOS and NMOS transistors, respectively.
- To make the output DC operating point zero, apply a DC offset to v_{in1} (It should be around 7.8mV).
- Use a sine signal with 1mV peak-to-peak amplitude and 1kHz frequency as a small signal voltage source.

Grading: a) 20%, b) 20%, c)10%, d)50%

Note: Do not forget to attach SPICE output file prints to your homework!