Student ID:

Date: 09/12/2016

BLG231E Digital Circuits
 MIDTERM II

Duration: 120 Minutes
Grading: 1) 20%, 2) 15%, 3) 35%, 4) 30%
Exam is in closed-notes and closed-books format; calculators are allowed For your answers please use the space provided in the exam sheet
GOOD LUCK!

1) Consider Boolean functions $\boldsymbol{f}_{\mathbf{1}}\left(\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \boldsymbol{x}_{3}\right)=\sum(0,1,3,5,6,7)$ and $\boldsymbol{f}_{\mathbf{2}}\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{5}, \boldsymbol{x}_{\mathbf{6}}\right)=\sum$ (2,3,4,5,6,7). Implement $\boldsymbol{f}=\boldsymbol{f}_{1}+\boldsymbol{f}_{2}$ using two 3-to-8 decoders and minimal number of two-input NOR gates.
2) Consider a comparator circuit that compares two binary inputs, A and B, and generates a binary output Y , such that $\mathrm{Y}=1$ if and only if these inputs are equal (i.e. $\mathrm{A}=\mathrm{B}$).
a) Implement a 1-bit comparator using a single 4-to-1 multiplexer.

- A and B are 1-bit numbers that results in 2 binary inputs and an output Y.
b) Implement a 4-bit comparator using four 4-to-1 multiplexers and a single AND gate.
- A and B are 4-bit numbers $\mathrm{A}=\mathrm{A} 3 \mathrm{~A} 2 \mathrm{~A} 1 \mathrm{~A} 0$ and $\mathrm{B}=\mathrm{B} 3 \mathrm{~B} 2 \mathrm{~B} 1 \mathrm{~B} 0$ that results in 8 binary inputs and an output Y.

3) Consider a sequential circuit shown below.

R	H	current Q	new Q
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

a) Fill out the above table by inserting new \boldsymbol{Q} values. If new \boldsymbol{Q} values cannot be precisely determined as logic 0 or logic 1 , then express them using current \boldsymbol{A} and \boldsymbol{B} values.
b) Find sum-of-products (SOP) expressions of new \boldsymbol{Q} in terms of $\boldsymbol{R}, \boldsymbol{H}$, current \boldsymbol{Q}, current \boldsymbol{A}, and current \boldsymbol{B}.
4) Consider a flip-flop consisting of one inverter, one XOR gate, and four NAND gates, shown below. Suppose that the inverter has a delay of 1ns; each of the NAND gates has a delay of 3ns; the XOR gate has a delay of 5ns. Sketch the waveforms at the outputs \mathbf{Q} and \mathbf{Q}^{\prime} if the input signals A and CLK shown below are applied. Suppose that initial values of Q and Q^{\prime} are 0 and 1, respectively.

