BLG231E Digital Circuits
 Homework 2

Deadline: 2/12/2016 (before 9:30)

1. LOGIC DESIGN WITH DECODERS AND MULTIPLEXERS

a) Implement $\boldsymbol{f}\left(x_{1}, x_{2}, x_{3}\right)=\prod(0,1,3,6,7)$ by using a single 3 -to- 8 decoder and minimum number of NAND-2 gates.
b) Implement $\boldsymbol{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum(3,5,6,7,10,11,12,13)$ by using a single 4 -to-1 multiplexer and minimum number of NAND-2 gates.
c) Implement $\boldsymbol{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\sum(0,1,4,7,10,13,15)$ by using a single 8 -to- 1 multiplexer and minimum number of NAND-2 gates.
d) Implement a 16-to-1 multiplexer by using 4-to-1 multiplexers.

2. DESIGNING A 2-BIT BY 2-BIT MULTIPLIER

Consider a 2-bit by 2-bit multiplier with its circuit symbol shown below.

a) Derive a truth table (with 16 rows) for the outputs P0, P1, P2, P3 in terms of the inputs A0, A1, B0, B1. Each row of the table represents a different input assignment. For example, if input binary numbers 11 and 10 are multiplied then the output binary number should be 0110 meaning that $\mathrm{A} 0=1, \mathrm{~A} 1=1, \mathrm{~B} 0=0$, $\mathrm{B} 1=1, \mathrm{P} 0=0, \mathrm{P} 1=1, \mathrm{P} 2=1, \mathrm{P} 3=0$ for the corresponding row.
b) Implement the multiplier by only using 2-to-4 decoders and 2-to-1 multiplexers. Suppose that each decoder has a cost of 2 and each multiplexer has a cost of $\mathbf{1}$. Minimize the total cost.

3. DESIGN OF AN ANALOG TO DIGITAL CONVERTER

Consider a circuit structure shown below. Suppose that $V_{\text {ref }}=\mathbf{8 V}$. A comparator has an output of logic 1 if the voltage level on its positive input is larger than the voltage level on its negative input. For example, $\mathbf{V}_{\text {in }}=\mathbf{5 . 2 V}$ results in $0,0,0,1,1,1,1,1$ outputs from top to bottom. Design the circuit block such that, if $V_{\text {in }}>\mathbf{8 V}$, the display shows " $\mathbf{8}$ "; if $\mathbf{8 V}>\mathrm{V}_{\text {in }}$ $>7 \mathbf{V}$, the display shows " 7 "; ,..........; if $\mathbf{2 V}>\mathbf{V}_{\text {in }}>\mathbf{1 V}$, the display shows " 1 ". Use a priority encoder, a decoder, and OR gates.

Grading: 1)30\%, 2)30\%, 3)40\%
Note: Return a hard-copy of your homework; you can put your homework under my door.

