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Abstract—Switching lattices are two-dimensional arrays com-
posed by four-terminal switches (crossbar arrays). The idea of
using regular two-dimensional arrays of switches to implement
Boolean functions was proposed by Akers in 1972. Recently,
with the advent of a variety of emerging nanoscale technologies,
lattices have found a renewed interest. Switching lattices can
have a non-negligible defective ratio. In this paper, we analyze the
fault tolerance of switching lattices under the stuck-at-fault model
(SAFM). We first identify the critical switches with a sensitivity
analysis of the lattice. We then propose some techniques to
improve the resilience to faults, which are implemented as a
post preprocessing step after logic optimization.

Index Terms—Switching lattices, Stuck-At-Fault Model, fault
tolerance.

I. INTRODUCTION

Recent years advancements in process scaling and 3D
monolitical integration brought multiple possibilities for
emerging devices to push further integration of electronic
circuits. Nano-crossbars are among one of the most promising
alternative solutions technology beyond CMOS devices [25].
They lead to programmable circuit architectures based on
nano-crossbar arrays which operate similarly to conventional
programmable logic arrays (PLAs), molecular switch crossbar
arrays, and resistive crossbar logic [2], [12]. Due to simpler
and cheaper manufacturing techniques, programmable cross-
bars result in regular and dense form [6] that are area and
power efficient [2]. The computation is done on matrixes
of switching elements that can be made of two-terminal
switches i.e diodes [13], or resistive/memristive elements [19]
or FET transistos [20]. Four terminal switches is also a great
possibility particularly well adapted to dual logic functions [1],
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[16]. The memrisitve based cross points represents probably
the most prominent solution explored by several research
groups [14], adopted due to their potential to scale down
to 5nm, compatibility to CMOS process, and also their po-
tential to be used as memory elements. Indeed, due to the
non-volatility of these devices, they offer possibilities for
implementation of memory-intensive computing paradigms,
enabling non Von-Neuman logic-in-memory operations [4].
This paradigm, allows logic and arithmetic operations to be
directly processed in the memory within the crossbar array,
making them attractive from neuromorphic applications such
as prediction, classification and decision-making problems
[9], [18]. Memristive devices can be programmed to store
either two states (binary) or more than two (analog), when
multiple resistance states are used together. These emerging
technologies are quite immatures, prone to important defect
densities (induces by spot defects, dust, assemblage faults,
imperfections of the circuit), or instabilities that affect their
yield. The faults that can be found in these technologies can
be classified into two categories: soft faults and hard faults
[8], [22]. Soft faults are caused by different cycle-to-cycle or
device-to-device variations that appear during the fabrication,
but also in-field during read/write operations [24]. Hard faults
are provoked by fabrication steps or they can be caused by the
forming process or by continuous stress; they are more difficult
to be prevented. One typical type of hard fault occurs when the
resistance of a resistive memory cell will no longer change;
this category includes stuck-at-0 (SA0) and stuck-at-1 (SA1)
faults caused by fabrication techniques and limited endurance.
In this case, the faulty device is stuck at high resistance or
low resistance state, and these situations are occurring with
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a quite high probability. It is reported that 63% of a storage
array based on memristor is fault free in a 4Mb resistive RAM,
with about 10% of the cells being of Stuck-At type [5]. In
[23] the authors showed that 10% of broken memristor cells
will lead to substantial degradation of the accuracy and overall
performances of a convolutional neural network implemented
on this structure. All these studies are performed on crossbar
arrays for binary resistive devices. Very limited research has
been dedicated to analyze faults model of resistive devices
where multiple resistances are used. Since the fabrication
technology of memristive cells is sensitive to different process
steps (i.e., forming), it is very difficult to prevent SA faults dur-
ing fabrication process [8], [5] which are therefore considered
as predominant. Based on these above-mentioned fault models
defined for memristors, various testing methods have been
proposed in [7], [11], [15]. Testing provides a fault map that
can be used for marking faulty devices and help reorganizing
the programmability of the crossbar around defected cells
through algorithm remapping [23]). This generally necessitates
important area overheads, as sufficient spare cells organized on
columns, lines or blocks have to be provided. Moreover, spare
cells are usually considered as defect free, which is not always
the case. In addition, as mentioned previously, variability of
memristor resistances during write operations may also push
the device in a hard Stuck-at fault. Understanding the impact
of the sensitivity to defects and transient faults of memrisitive
based devices on the mapping algorithm is a key step for future
development. Yield analysis of nanocross-bars for uniformly
and clustered distributed defects have been performed in [17],
[21]. In this paper, our contributions are as follows: 1) We
propose a fault injection method and tools in crossbar lattices
which substitute a single cell with an always SA1 or SA0 cell.
The fault injection algorithm uses uniform distribution. 2) The
sensitivity of a decomposition algorithm on a given crossbar is
analyzed face to SA0 and SA1. 3) The prior sensitivity analysis
of help identifies critical switches. Further to that we propose
mitigation factors to strengthen the mapping algorithm while
keeping the crossbar area minimal.

The paper is organized as follows. Section II explain the
logic function synthesis method on crossbar switching arrays.
Section III discuss the fault model and the sensitivity analysis
method. Section IV and V discuss methods for mitigation and
finally Section VI presents sensitivity results.

II. SWITCHING LATTICES AND SYNTHESIS METHODS

A switching lattice is a two-dimensional array of four-
terminal switches. The four terminals of the switch link to
the four neightbours of a lattice cell, so that these are either
all connected (when the switch is ON), or disconnected (when
the switch is OFF). A Boolean function can be implemented
by a lattice in terms of connectivity across it:
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Fig. 1. A four terminal switching network implementing the function
f = x1x2x3+x1x2+x2x3 (a); its corresponding lattice form (b); the
lattice evaluated on the assignments 1,1,0 (c) and 0, 0, 1 (d), with grey
and white squares representing ON and OFF switches, respectively.

• each four-terminal switch is controlled by a literal;
• if the literal takes the value 1, the corresponding switch is

connected to its four neightbours, else it is not connected;
• the function evaluates to 1 if and only if there exists a

connected path between two opposing edges of the lattice,
i.e., the top and the bottom edges;

• input assignments that leave the edges unconnected cor-
respond to output 0.

For instance, the network of switches in Figure 1 (a) corre-
sponds to the lattice form depicted in Figure 1 (b), which
implements the function f = x1x2x3 + x1x2 + x2x3. If
we assign the values 1, 1, 0 to the variables x1, x2, x3,
respectively, we obtain paths of gray square connecting the
top and the bottom edges of the lattices (Figure 1 (c)), on this
assignment f evaluates to 1. On the contrary, the assignment
x1 = 0, x2 = 0, x3 = 1, on which f evaluates to 0, does not
define any path from the top to the bottom edge (Figure 1 (d)).

The synthesis objective on a lattice consists in finding an
assignment of literals to switches in order to implement a
given target function with a lattice of minimal size. The size
is measured in terms of the number of switches in the lattice.

A switching lattice can similarly be equipped with left
edge to right edge connectivity, so that a single lattice can
implement two different functions. This fact is explained in [3]
where the authors propose a synthesis method for switching
lattices simultaneously implementing a function f according
to the connectivity between the top and the bottom plates, and
its dual function fD according to the connectivity between
the left and the right plates. Recall that the dual of a Boolean
function f depending on n binary variables is the function
fD such that f(x1, x2, . . . , xn) = fD(x1, x2, . . . , xn). This
method produces lattices with a size that grows linearly with
the number of products in an irredundant sum of product



(SOP) representation of f , and consists of the following steps:
1) find an irredundant, or a minimal, SOP representation

for f and fD: SOP (f) = p1 + p2 + · · · + ps and
SOP (fD) = q1 + q2 + · · ·+ qr;

2) assign each product pj (1 ≤ j ≤ s) of SOP (f) to a
column and each product qi (1 ≤ i ≤ r) of SOP (fD)

to a row;
3) for all 1 ≤ i ≤ r and all 1 ≤ j ≤ s, assign to the switch

on the lattice site (i, j) one literal which is shared by qi
and pj (the fact that f and fD are duals guarantees that
such a shared literal exists for all i and j).

Note that, we can have a couple of products qi and pj such
that the intersection of their literals is a set of cardinality
greater that one. For building the corresponding lattice, the
algorithm imposes to choose randomly one of the common
literals. In this case, we denote the corresponding cell (i, j)

as a cell with multiple choice. Moreover, note that, in Step 2 of
the synthesis algorithm, the assignments of products to rows
and columns is random. For example, consider the function
f in ISOP form f = x1x2 + x1x3 + x2x3 and its dual
fD = x1x2 + x1x3 + x2x3. The lattice containing the cells
with multiple choice is depicted in Figure 3. At the top of
Figure 4, we have two possible lattices derived from the former
by choosing a literal in the cells with multiple choice.

A second approach to the synthesis of minimal-sized lattices
is proposed in [10], where the authors transform the synthesis
problem into a satisfiability problem in quantified Boolean
logic and solve it using a quantified Boolean formula solver.

III. STUCK-AT-FAULTS IN LATTICES

The classical SAF model is well-known and classically used
throughout the CMOS industry for many years. In CMOS, the
SA model assumes that a defect causes a basic cell input or
output to be fixed to either 0 or 1. Thus, all defects with this
effect can be detected by tests for stuck-at-faultsi test. In a
lattice, a SAF can be similarly modeled as a fixed value (0 or
1) in the faulty cell (i.e., a four-terminal switch) of the lattice.

In this section we briefly summarize the methodology
described in [16] for the fault injection, which we exploit for
the sensitivity analysis of our approach. The fault injectionis
performed substituting a single cell with an always stuck-
at 1 (SA1) or stack-at 0 (SA0) cell. The fault injection
procedure is repeated for each cell of the lattice The simulation
algorithm then generates all the 2n possible inputs. For each
input x1, . . . , xn the algorithm compares the given output with
the correct one (i.e., f(x1, . . . , xn). Note that, we are not
interesten in evalueting the sensitivity of the dual function fD.

Let r and s be number of rows and columns, respectively, in
a lattice. Let E0

ij (resp., E1
ij), with 1 ≤ i ≤ r, 1 ≤ j ≤ s , be

the number of defective outputs with a SA0 (resp., SA1) in the
cell (i, j) of the given lattice. When E0

ij (resp., E1
ij) is equal to

1 1 1 2 1
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a)
Fig. 2. a) Lattice design for the example function f and its sensitivity map
for b) SA0 and c) SA1.

0 and, for any possible input, the lattice functional output is not
affected by the SAF in the cell (i, j). In this case, the cell (i, j)
is considered robust w.r.t. SA0 (resp., SA1). Let R0 (resp., R1)
be the total number of robust cells w.r.t. SA0 (resp., SA1) in
the lattice. Finally, let E0 =

∑i=r
i=1

∑j=s
j=1 E

0
ij (resp., E1 =∑i=r

i=1

∑j=s
j=1 E

1
ij) be the total number of defective outputs with

SA0 (resp. SA1) in the simulation. Consider, for example, the
function f = x4x5x7+x4x6x7+x4x5x6x7+x4x6x7+x4x6x7

represented by the lattice in Figure 2 (a) (derived with the
method in [3]). Figures 2 (b) and 2 (c) show the sensitivity
map containing the value E0

ij and E1
ij in each cell. In order to

evaluate the sensitivity of a lattice to SA0 and SA1 defects, we
propose a metric that provides the average number of defective
outputs: Sensitivity of lattice is the total number of inputs that
propagetes a SA0/SA1 to an uncorrected output divided by the
total number of inputs. In the case of SA0, S0

L = E0/(2n(r×
s)), and for SA1, S1

L = E1/(2n(r × s)).
IV. PROPERTIES OF LATTICE SYNTHESIZED WITH THE

ALTUN-RIEDEL SYNTHESIS METHOD
We now discuss some characteristics of the switching lat-

tices obtained with the Altun-Riedel synthesis method [3] that
could be exploited to enhance their fault tolerance.

First of all, we note that the Altun-Riedel method defines
many equivalent lattices for the given function f . Indeed, in
the second step of the procedure (see Section II) each product
in an irredundant SOP for f is assigned to a column, and each
product in an irredundant SOP for the dual fD is assigned to
a row, without any specific rule for these assignments. As a
consequence, any permutation of the products in SOP (f) and
in SOP (fD) gives rise to a correct, and possibly different,
lattice for f . Moreover, once each pair of products (one
from SOP (f) and one from SOP (fD)) has been assigned
to a lattice cell, the controlling literal is selected choosing
arbitrarily one of the literals shared by both products. Thus,
we can have multiple choices for all cells with multiple choice.

Taking into account these degrees of freedom, we now
evaluate the number of potentially different lattices produced
by this synthesis procedure. Suppose that SOP (f) contains s

products, and SOP (fD) contains r products. The lattice for
f has dimension r× s. Let us denote by S(i, j) the subset of
literals shared by the products assigned to the cell (i, j), and
by si,j the cardinality of this set. We have

Proposition 1: The number Nf of lattices for f produced by
the Altun-Riedel method is given by Nf = r!s!

∏
1≤i≤r
1≤j≤s

si,j .

Proof. Immediately follows since there are r! ways to assign
the products of SOP (fD) to the rows of the lattice, s! ways
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Fig. 3. A lattice for the function f = x1x2 + x1x3 + x2x3, with multiple
choices on the diagonal cells.
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Fig. 4. Two lattices for f = x1x2 + x1x3 + x2x3 (see Figure 3 for the
multiple choice lattice), with different sensitivity to SA0 and SA1 defects.

to assign the products of SOP (f) to the columns, and si,j
ways to select the controlling literals of each cell (i, j).
Observe that Nf can be exponential in the lattice size:

Corollary 1: Let f depend on n binary variables. Then
Nf = O(r!s!nrs).
Proof. Easy follows as si,j ≤ n.

Thus, the Altun-Riedel method provides many equivalent
lattices for the same specified function f , all of dimension
r×s, and these lattices may exhibit a different SAF sensitivity
for a single fault. Consider, for example, the lattice for f =

x1x2 + x1x3 + x2x3 depicted in Figure 3, with cells with
multiple choice on the diagonal. Starting from this lattice we
can build up to 288 = 3!3!8 lattices by permuting rows and
columns and by choosing the controlling literal fo the diagonal
cells. For instance, by simply making different choices at the
diagonal cells, we could get the two lattices in Figure 4, which
exhibit a different sensitivity to SA0 and SA1 defects: S0

L =

1/12 and S1
L = 1/24 for the first lattice, and S0

L = 1/9 and
S1
L = 1/18 for the second one. In particular, the first lattice

contains more robust cells, probably as a consequence of the
many adjacent cells with the same controlling literal that might
help to contain the effect of a faulty cell. Therefore, instead of
picking a random permutation of the products in the starting
SOPs, and selecting arbitrarily the controlling literal for all
cells with multiple choice, one should exploit the degrees of
freedom offered by the Altun-Riedel method to detect, among
the Nf different lattices, the most resilient one. This issue will
be discussed in the next Section V.

Finally, the possibility of permuting rows and columns is
not guaranteed in lattices synthesized with other strategies
(e.g., [10]). Consider for instance the 3 × 3 lattice L for
the function f = x1x2x3 + x1x2x3 + x1x2x3 shown in
Figure 5 (a). This lattice has not been derived with the Altun-
Riedel method, that would instead produce a lattice of size
4× 3. Permuting the columns of L, we can derive the lattice

x1
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x3 x3

x2

x1 x1

x2

x3

(a)

x1

x2

x3 x3

x1 x1

x2

x3

(b)

x2

Fig. 5. A lattice L for f = x1x2x3 + x1x2x3 + x1x2x3 (a); a lattice
obtained from L by a column permutation (b). Both lattices are evaluated on
the assignment x1 = 1, x2 = 1, x3 = 1.

in Figure 5 (b) that does not implement the function f , as it
contains an accepting path for the off-set minterm x1x2x3.

V. CHARACTERIZATION AND CONSTRUCTION OF THE

MOST RESILIENT LATTICE

Let us consider the Altun-Riedel synthesis method [3] and
a Boolean function f . By the discussion in Section IV, we
know that the different possible lattices for f , generated by
the synthesis algorithm, are exponential in number. Thus, the
main aim of this section is the study of efficient strategies to
select the lattice that is less sensitive to cell defects.

Consider the two lattices shown in Figure 6. The two lattice
are derived applying Altun-Riedel method to the function f =

x1 + x2x4x5 + x3x4x5. Let us assume a SA0 on the first cell
on the top-left (depicted in gray in the lattices). While the
lattice on the left computes a different function , i.e., f ′ =
x1 + x3x4x5, the lattice on the right computes the correct
function even in presence of the SAF. We can observe that
the lattice on the right is derived from the first by a simple
permutation of columns. In particular, in the second lattice,
two similar columns are adjacent. The example gives us the
intuition that, in order to decrease the sensitivity to cell defect,
we should bring near cells containing the same literal. In fact
the product that is no more computed by the faulty version of
the first lattice (i.e., x2x4x5), is computed by the second lattice
using a ”bypass” starting at the top of the second column
going down and then on the left (i.e., path x4, x5, x5, x2).
Note that this ”bypass” is not possible in the lattice on the left
since the two involved columns are not adjacent. Motivated
by this observation, we describe several methods that try to
keep adjacent cells containing the same controlling literals. We
first give a metric that eases the description of the proposed
techniques. Two cells in a lattice are adjacent if they are in
the same column and in two adjacent rows or in the same
row and in two adjacent columns. Consider a lattice L where
each cell contains a controlling literal. For each cell c in L we
define ac the number of cells adjacent to c in L containing the
same literal that is in c. The value aL is

∑
c∈L ac. In order

to maximize the number of adjacent cells containing the same
literal we must maximize aL.

The synthesis algorithm by Altun-Riedel produces a lattice
containing cells with multiple choices (e.g., the lattice shown
in Figure 3). The approach we proposes is based on three
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Fig. 6. Two equivalent lattices for the function f = x1+x2x4x5+x3x4x5.
While, in case of a SA0 in the first cell on top-left, the first lattice computes
a different function, the second one still computes f .

algorithms, each starting with a lattice (containing cells with
multiple choices) produced by Altun-Riedel’s algorithm:
• PermuteColumns: make a random choice for the cells

with multiple choice and permute the columns in order
to maximize the number of adjacent cells containing the
same literal (i.e., aL).

• PermuteRows: make a random choice for the cells with
multiple choice and permute the rows of a given lattice in
order to maximize the number of adjacent cells containing
the same literal (i.e., aL).

• ChooseLiteral: given a lattice containing cells with mul-
tiple choice, in each cell with multiple choice chooses
the literal that maximize the number of adjacent cells
containing the same literal (i.e., aL).

Note that the three algorithms return one of the Nf possible
lattices produced by Altun-Riedel’s algorithm. In other words,
the proposed procedures make deterministic choices aiming at
reducing the sensitiveness to defects, instead of the random
choices performed by Altun-Riedel’s algorithm.

VI. EXPERIMENTAL EVALUATION

In this section we report some experimental results in order
to analyze the fault sensitivity of switching lattices under the
stuck-at-fault model. Our aim is to determine the strategy that
allows to obtain the function decomposition less sensitive to
SA0 and SA1 defects. For this purpose, for a given benchmark
we consider five different lattices:
• L1: initial generic lattice, where no algorithms have

been applied to maximize the number of adjacent cells
containing the same literal (i.e., [3] method)

• L2: lattice obtained by the PermuteRows algorithm;
• L3: lattice obtained by the PermuteColumns algorithm;
• L4: lattice obtained by applying both PermuteRows and

PermuteColumns algorithms in the same time;
• L5: lattice obtained by the ChooseLiteral algorithm.
To compute the best permutation of rows and columns we

use the linear optimizer GLPK (GNU Linear Programming
Kit). The simulation of GLPK on each input case is stopped
after 1 hour in case the optimal solution is not computed. If
the simulation is stopped after 1 hour (then without obtaining
the optimal solution) GLPK produces a percentage giving a
measure of how the obtained solution if far from the optimal
one. In Table I, we mark these cases with the simbol ’?’.

Given a benchmark, after the computation of the 5 lattices,
we inject errors and then we compute the metric described in
Sect. III to evaluate the proposed strategies. The experiments
have been run on a machine with two AMD Opteron 4274HE
for a total of 16 CPUs at 2.5 GHz and 128 GByte of main
memory, running Linux CentOS 7. The benchmarks functions
are expressed in PLA form and are taken from a subset
of LGSynth93 [26]. A total of about 620 functions were
considered, and each output of a function is implemented as a
separate Boolean function. The software used for simulations
is written in C++. Since the simulation time depends on the
number of variables, we consider lattices with a number of
variables lower than 8. Note that this limitation is due to the
onerous procedure for the fault simulation, and it is not due
to our proposed algorithms.

In Table I we report the sensitivity of lattices to SA0 and
SA1 defects. Due to lack of space, the reported values are a
significant subset of the obtained one. The first column reports
the name and the output number of the considered benchmark
and lattice dimension (r × c); the second column reports the
number of variables. The following columns report, by group
of two, the results for each computed lattice, by the metric
described in Sect III, for SA0 and SA1 respectively.

Table II presents the percentages (% more resilient lattices)
representing the amount of L2 to L5 lattices with higher
resilience to faults w.r.t. the corresponding lattices in the set
L1, and the percentages of average gains (average gain). To
compute the percentages in Table II we consider the lattices in
L2 (L3) with more than two rows (columns), and the lattices
in L4 with at most two columns or at most two rows, and
lattices in L5 that present cells with a multiple choice.

We may observe that all the proposed techniques allows to
improve the resilience to faults. In particular, while for SA0 the
best results are obtained with row permutation (i.e., L2), for
SA1 the best results are obtained with columns permutation
(i.e., L3). The permutation of rows and columns (i.e., L4)
seems to be a good solution for both SA1 and SA0. The results
obtained for the L5 set seem to be very encouraging.

VII. CONCLUSION

Emerging nanoscale technologies are very promising for
circuit level implementation in cross-bar structures. However,
due to their immature process, they can have non-negligible
defect ratio and important variability. In this paper, we have
proposed a method to analyze fault sensitivity of switching
lattices under the stuck-at-fault model (SAF). Algorithmic
improvements of the fault resilience has been proposed, ex-
ploiting different redundant schemes, such as literal selection,
row or column permutations, or combination of both. Future
work includes the study of soft errors, for which an error
detection and correction phase should be deployed in addition
to the remapping technique.



TABLE I
A COMPARISON OF S0

L AND S0
C BETWEEN LATTICES L1, L2, L3, L4 AND L5. BEST RESULTS ARE IN BOLD FACE.

L1 L2 L3 L4 L5
r × s n S0

L S1
L S0

L S1
L S0

L S1
L S0

L S1
L S0

L S1
L

al2(0) 3×5 7 0.013 0.133 0.011 0.136 0.013 0.133 0.011 0.136 0.013 0.133
al2(13) 6×5 7 0.047 0.007 0.039 0.003 0.050 0.005 0.039 0.003 0.047 0.007
alcom(2) 2×4 5 0.070 0.016 0.063 0.023 0.070 0.016 0.063 0.023 0.070 0.016
alu2(2) 11×10 8 0.004 0.012 0.002 0.005 0.004 0.013 0.002 0.006 0.004 0.012
b9(0) 9×10 7 0.009 0.020 0.007 0.019 0.010 0.014 0.007 0.014 0.007 0.015
b11(3) 3×6 6 0.038 0.043 0.028 0.033 0.039 0.038 0.028 0.026 0.038 0.043
bench(7) 4×6 6 0.317 0.284 0.320 0.281 0.317 0.283 0.320 0.282 0.319 0.284
clpl(0) 4×4 7 0.025 0.092 0.025 0.092 0.025 0.087 0.025 0.087 0.025 0.092
dc2(3) 12×14 7 0.005 0.003 0.002? 0.003? 0.005? 0.002? 0.003? 0.003? 0.005 0.003
fout(9) 10×12 6 0.021 0.030 0.005? 0.021? 0.005 0.025 0.005 0.016? 0.006 0.019
in6(0) 2×7 8 0.021 0.034 0.020 0.036 0.021 0.034 0.020 0.036 0.001 0.001
luc(7) 4×7 6 0.009 0.040 0.006 0.032 0.009 0.036 0.006 0.031 0.009 0.040
luc(13) 9×10 6 0.006 0.012 0.004 0.011 0.006 0.010 0.004 0.008 0.004 0.015
pope.rom(7) 15×11 6 0.004 0.014 0.002 0.013 0.005? 0.010? 0.003 0.009? 0.003 0.009
rd53(2) 16×16 5 0.018 0.008 0.018? 0.004? 0.011? 0.015? 0.008? 0.004? 0.008 0.0036
t4(6) 3×3 4 0.118 0.069 0.097 0.083 0.118 0.069 0.104 0.076 0.118 0.069

TABLE II
COMPARISON OF PROPOSE ALGORITHMS WITH RESPECT TO L1.

L2 L3 L4 L5
% more
resilient
lattices

average
gain

% more
resilient
lattices

average
gain

% more
resilient
lattices

average
gain

% more
resilient
lattices

average
gain

SA0 30% 17% 58% 20% 37% 27% 68% 22%
SA1 40% 25% 16% 20% 39% 25% 49% 22%
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