
A Satisfiability-Based Approximate Algorithm for
Logic Synthesis Using Switching Lattices

Levent Aksoy and Mustafa Altun
Electronics and Communication Engineering, Istanbul Technical University

Istanbul, Turkey

{aksoyl, altunmus}@itu.edu.tr

Abstract—In recent years the realization of a logic function
on two-dimensional arrays of four-terminal switches, called
switching lattices, has attracted considerable interest. Exact
and approximate methods have been proposed for the problem
of synthesizing Boolean functions on switching lattices with
minimum size, called lattice synthesis (LS) problem. However,
the exact method can only handle relatively small instances and
the approximate methods may find solutions that are far from
the optimum. This paper introduces an approximate algorithm,
called JANUS, that formalizes the problem of realizing a logic
function on a given lattice, called lattice mapping (LM) problem,
as a satisfiability problem and explores the search space of the LS
problem in a dichotomic search manner, solving LM problems
for possible lattice candidates. This paper also presents three
methods to improve the initial upper bound and an efficient way
to realize multiple logic functions on a single lattice. Experimental
results show that JANUS can find solutions very close to the
minimum in a reasonable time and obtain better results than
the existing approximate methods. The solutions of JANUS can
also be better than those of the exact method, which cannot be
determined to be optimal due to the given time limit, where the
maximum gain on the number of switches reaches up to 25%.

I. INTRODUCTION

Over the years efficient structures, architectures, and tech-

niques have been introduced to implement memory cores,

programmable logic arrays and interconnects using nano-

technologies [1], [2]. Switching lattices have been proposed as

key structures to synthesize logic functions, aiming to achieve

significant gains on area, delay, and power consumption with

respect to designs using traditional two-terminal switches [3],

[4]. From a technological perspective, it is indicated in [3] that

switching lattices fit perfectly in emerging technologies, such

as nanowire and spin-wave crossbar structures and it is shown

in [5] that the conventional CMOS technology can be used to

implement switching lattices.

A four-terminal switch is depicted in Fig. 1(a). Its all four

terminals are either disconnected (OFF) if its control input x
has the value 0, or connected (ON), otherwise. A switching

lattice is a network of four-terminal switches, where each

switch is connected to its horizontal and vertical neighbors.

As an example, Fig. 1(b) depicts the 3×3 switching net-

work, where x1 . . .x9 denote the control inputs of switches.

The lattice function, whose inputs are the control inputs of

switches, evaluates to 1 if there is a path between the top

and bottom plates of the lattice. Thus, the lattice function is

written as the sum of products of control inputs of switches

This work is part of a project that has received funding from the
European Union’s H2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 691178, and supported by the
TUBITAK-Career project #113E760.

x1

x4

x7

x2

x5

x8

x3

x6

x9

(a) (b) (c)

d c a

0 b
c c

b a

d

(d)

a d
a

d

b a
b

ON

x

x = 0 x = 1

OFF

Fig. 1. (a) Four-terminal switch; (b) 3×3 four-terminal switching network;
realizations of f = abcd+abcd: (c) using the 3×3 switching lattice; (d) using
a switching lattice with the minimum size, i.e., 4×2.

in each path. The function of the 3×3 lattice can be given

as f3×3 = x1x4x7 + x2x5x8 + x3x6x9 + x1x4x5x8 + x2x5x4x7 +
x2x5x6x9 + x3x6x5x8 + x1x4x5x6x9 + x3x6x5x4x7. Note that a

lattice function is unique and does not include any redundant

products, e.g., a possible path x1x2x3x6x9 in the 3×3 switching

network is eliminated by the path x3x6x9.

A switching lattice can be used to realize a logic function

by simply mapping the appropriate literals of this target

function and/or constant values (0 and 1) to the control inputs

of switches. Thus, the fundamental problem, called lattice

mapping (LM), is defined as: given a target function f and an

m× n lattice function fm×n, find the appropriate assignments

to the lattice variables such that the target function f can be

realized on the m × n lattice or prove that there exists no

such assignment. Note that the LM problem was shown to

be NP-complete in [6]. As an example, Fig. 1(c) depicts the

realization of f = abcd +abcd on the 3×3 switching lattice.

In the realization of a logic function using a switching

lattice, the design complexity is determined as the number

of switches, i.e., the lattice size. Thus, the main optimization

problem, called the lattice synthesis (LS), is defined as: given

the target function f , find an m×n lattice such that there exists

an appropriate assignment to the lattice variables, realizing the

target function f , and m times n is minimum. Returning to our

example, Fig. 1(d) presents the realization of f = abcd+abcd
on a lattice with the minimum size of 4×2.

In this paper, we present an approximate method designed

for the LS problem, called JANUS, where the LM problem is

formulated as a satisfiability (SAT) problem and the initial

upper bounds of the search space are improved. We also

describe how multiple functions can be realized on a single

lattice efficiently. Experimental results show that JANUS can

find better solutions than existing methods in less run time.

Rest of the paper is organized as follows. Section II gives

the background concepts and related work. Section III presents

the proposed algorithm and experimental results are shown in

Section IV. Finally, Section V concludes the paper.

x1
x2

x3
x4

x5

x6

x7
φ = (x1+x5)·(x2+x5)·(x1+x2+x5)·

(x3+x6)·(x4+x6)·(x3+x4+x6)·
(x5+x7)·(x6+x7)·(x5+x6+x7)

Fig. 2. A combinational network and its POS formula.

II. BACKGROUND

A. Definitions

A Boolean function f in sum of products (SOP) form on r
variables x1, . . . ,xr is a disjunction of s products p1, . . . , ps
where a product pi = l1 · l2 · . . . · l j, i ≤ s and j ≤ r, is a

conjunction of literals. A literal l j, j ≤ r, is either a variable

x j or its complement x j. A product is called implicant if and

only if it evaluates f to 1 and it is called prime implicant if it

is implicant and there exist no other implicants whose literals

are subset of its literals. In an irredundant SOP (ISOP) form

of f , every product is a prime implicant and no product can be

deleted without changing f . The degree of f is the maximum

number of literals in the products of f . Two functions f and

g are said to be dual functions if f (x1, . . . ,xr) = g(x1, . . . ,xr).
A Boolean function ϕ in product of sums (POS) form on

r variables is a conjunction of t clauses c1, . . . ,ct where a

clause ci = l1+ l2+ . . .+ l j, i ≤ t and j ≤ r, is a disjunction of

literals. Note that if a literal of a clause is set to 1, the clause

is satisfied. If all literals of a clause are set to 0, the clause

is unsatisfied. The satisfiability (SAT) problem is to find an

assignment to the variables of a function ϕ in POS form that

makes ϕ to be equal to 1 or to prove that ϕ is equal to 0.

A combinational circuit is a directed acyclic graph with

nodes and directed edges corresponding to logic gates and

wires connecting the gates, respectively. The POS formula of

a combinational circuit is the conjunction of POS formula of

each gate which denotes the valid input-output assignments to

the gate. The derivation of POS formulas of basic logic gates

can be found in [7]. Fig. 2 shows a combinational circuit and

its formula in the POS form.

In a switching lattice, a four-connected path is a sequence

of switches connected by taking horizontal and vertical moves

and an eight-connected path is generated by also taking

diagonal moves. Recall that a lattice function includes all the

irredundant four-connected paths between the top and bottom

plates. It is shown in [3] that the dual of a lattice function

consists of all the irredundant eight-connected paths between

the left and right plates. Returning to our example in Fig. 1,

the dual of f3×3 consists of 17 products1. Thus, finding a

realization of a target function on an m× n switching lattice

considering the four-connected paths between the top and

bottom plates can also be done by finding a realization of

the dual of the target function on the m×n lattice considering

the eight-connected paths between the left and right plates.

Hence, we take into account these two possible realizations

of the target function. Thus, algorithms, that can find a lattice

function and its dual in ISOP form, are also developed.

1They are x1x2x3, x1x2x6, x1x5x3, x1x5x6, x1x5x9, x4x2x3, x4x2x6, x4x5x3,
x4x5x6, x4x5x9, x4x8x6, x4x8x9, x7x5x3, x7x5x6, x7x5x9, x7x8x6, and x7x8x9.

TABLE I
NUMBER OF PRODUCTS IN THE m×n LATTICE FUNCTION AND ITS DUAL.

m/n 2 3 4 5 6 7 8

2
2 3 4 5 6 7 8
4 8 16 32 64 128 256

3
4 9 16 25 36 49 64
7 17 41 99 239 577 1393

4
6 17 36 67 118 203 344
10 28 78 216 600 1666 4626

5
10 37 94 205 436 957 2146
13 41 139 453 1497 4981 16539

6
16 77 236 621 1668 4883 14880
16 56 250 1018 4286 18730 81192

7
26 163 602 1905 6562 26317 110838
19 73 461 2439 13833 86963 539537

8
42 343 1528 5835 25686 139231 797048
22 92 872 6004 45788 421182 3779226

Table I presents the number of products in the m×n lattice

function and its dual at the top and bottom of each entry,

respectively, where 2 ≤ m,n ≤ 8. Observe that as the number

of rows and columns increases, the number of products in

the lattice functions increases dramatically, pointing out the

lattices that can be used to realize a rich variety of logic

functions. Note that a lattice function may have fewer or more

products than its dual, e.g., 2× 4 and 8× 4 lattices. For the

lattices with sizes very close to each other, there exists a

wide range of functions with different number of products. For

example, while f6×6 contains 1668 products, f7×5 has 1905

products. This is also true for the lattices with the same size.

As an example, while f3×8 includes 64 products, f6×4 has 236

products. It should be indicated that not only the number of

products, but also the number of literals in each product is

important while realizing a function on a switching lattice.

B. Related Work

In [3], an upper bound on the lattice size is obtained by

finding the common literals in the products of the target

function and its dual, and the lower bound on the lattice

size is computed based on the minimum degrees of the target

function and its dual. The exact algorithm of [6] explores the

search space using a binary search technique in between the

lower and upper bounds computed in [3]. During this search,

LM problems are solved for the given target function and

possible lattices. The LM problem is encoded as a quantified

Boolean formula (QBF) problem, the QBF constraints are

converted to SAT clauses, and a solution is found using a SAT

solver. The approximate method of [6] restricts this exact QBF

formulation by allowing the paths to include only the literals

in the given products, reducing the size of SAT problems.

However, since the approximate method may yield a non-

optimal solution, it may solve more LM problems than the

exact method. The method of [8] synthesizes the D-reducible

form of a target function, which is composed of two small sub-

functions, on a switching lattice. In [8], these sub-functions

are synthesized using the exact method of [6] and then, their

solutions are merged into a single lattice. Note that not every

logic function can be represented in the D-reducible form.

Similarly, the methods of [9], [10] exploit the p-circuits and

autosymmetric form of a target function, respectively and use

the algorithms of [3], [6] to find a solution on the decomposed

smaller functions. In [10], the target function is synthesized

with multiple lattices sharing the common ones, but adding

extra logic gates which may not be desirable due to the wires

between these gates and lattice control inputs. The method

of [11] determines a number of promising lattice candidates

and uses a method of [6] to find if one of these lattices leads

to a solution.

III. THE PROPOSED APRROXIMATE ALGORITHM

JANUS takes the target function f as an input and finds its

implementation on a switching lattice as described below:

1) Determine the lower bound (lb) and upper bound (ub)

of the LS problem in terms of the number of switches.

2) If lb = ub, return the solution found in computing ub.

3) Determine the middle point as mp = �(lb+ub)/2� and

generate a set of lattice candidates as done in [6].

4) For each lattice candidate, generate the related LM

problem and check if f can be realized using the lattice

candidate. If there exists a solution to the LM problem,

set ub to mp and go to Step 6.

5) If there are no solutions for all lattice candidates, set lb
to mp+1.

6) If lb < ub, go to Step 3. Otherwise, return the solution.

In this section, we first present the SAT encoding of the

LM problem (Step 4), and then, introduce the methods, that

improve the initial upper bounds of the LS problem, where

JANUS is also used (Step 1). Finally, we describe how JANUS

can be applied to multiple functions efficiently.

A. Finding a Solution to the LM Problem

Given the target function with a minimum number of prod-

ucts obtained using a logic minimization tool and the lattice

function, all in ISOP form, initially, the structural check is

performed. In this case, we check for each product of the target

function if there exists a product in the lattice function with a

number of literals greater than or equal to that of the product

in the target function. For our example in Fig. 1, neither

f8×1 = x1x2x3x4x5x6x7x8 nor f2×4 = x1x5 + x2x6 + x3x7 + x4x8

can be used to realize f = abcd + abcd. Because while f8×1

and f have 1 and 2 products, respectively, f2×4 and f have

products with 2 and 4 literals, respectively. The same check is

also carried out for the duals of the target and lattice functions.

If the structural check is passed, then we check if there

exists an assignment to the lattice function variables included

in the lattice variable set LV from the target literal set T L
consisting of the target function literals and constants 0 and 1

such that every entry in the truth table of the target function

is satisfied. The LM problem is encoded as a SAT problem in

three steps as follows.

First, we generate the sets LV and T L and the mapping

variables lvi tl j, where lvi ∈ LV with 1≤ i≤ |LV | and tl j ∈ T L
with 1 ≤ j ≤ |T L|, and |A| denotes the cardinality of set

A. The mapping variable lvi tl j indicates that the lattice

variable lvi is assigned to an element of T L, tl j, when this

mapping variable is set to high. For our example in Fig. 1(c),

LV = {x1,x2, . . . ,x9}, T L = {a,a,b,b,c,d,d,0,1}, and as an

x1_0000
x4_0000
x7_0000

x2_0000
x5_0000
x7_0000

x3_0000
x6_0000
x5_0000
x4_0000
x7_0000

0
0

0

0

x4_0000

x1_0111
x4_0111
x7_0111

x2_0111
x5_0111
x7_0111

x3_0111
x6_0111
x5_0111
x4_0111
x7_0111

1x4_0111

(a) (b)
Fig. 3. The combinational circuits of f3×3 for f = abcd + abcd: (a) when
abcd = 0000 and f is low; (b) when abcd = 0111 and f is high.

example, the mapping variable x1 a indicates that the lattice

variable x1 is assigned to a, if x1 a is set to high. Moreover,

we generate clauses, which confirm that each lattice variable

is assigned to only one element in the T L set, as follows:

|LV |
∏
i=1

|T L|
∑
j=1

lvi tl j and
|LV |
∏
i=1

|T L|−1

∏
j=1

|T L|
∏

k= j+1

lvi tl j + lvi tlk

where ∏ and ∑ are AND and OR operators, respectively. While

the former clauses confirm that for each lattice variable, at least

one of the mapping variables should be set to high, the latter

ones ensure that for each lattice variable, when one mapping

variable is set to high, the other ones should be set to low.

Second, to satisfy the target function, for each truth table

entry, we generate the combinational circuit corresponding to

the lattice function and assign the target function value at this

entry to the circuit output. The circuit inputs, i.e., the lattice

function variables, are associated with the truth table entry and

denoted as lvi tte, where 1 ≤ i ≤ |LV | and tte is the truth table

entry. We obtain the POS formula of the circuit as shown in

Fig. 2 and simplify it based on the logic value at the circuit

output. For our example in Fig. 1(c), Fig. 3 presents the circuits

generated for the abcd = 0000 and abcd = 0111 points, where

the target function is 0 and 1, respectively. For the sake of

clarity, only three products of f3×3 are shown in this figure.

Observe from Fig. 3(a) that when the target function is low

for a truth table entry, the logic 0 at the OR gate output can

be propagated to the outputs of AND gates and thus, the POS

formula of the circuit can be reduced to the only ones that

indicate the possible ways of setting each AND gate output to

0. For our example in Fig. 3(a), the clause generated for the

AND gate at the top is x1 0000 + x4 0000 + x7 0000.

Observe from Fig. 3(b) that when the target function is high

for a truth table entry, the clauses, which ensure that if an input

of the OR gate is high, the OR gate output should be high, can

be removed from the POS formula. Moreover, for this case,

there should be at least one four-connected path in between the

top and bottom plates where the control inputs of associated

switches are set to high. This path is shown on the lattice of

Fig. 1(c) with the shaded blocks when abcd = 0111. There

exist two facts related to this case described as follows: i) in

each row of the switching lattice, there should be at least one

switch whose control input has a high value; ii) in each two

consecutive rows, there should be at least one situation that

the control inputs of switches on the same column have a high

value. We generate clauses for these facts to hold.

In order to link the mapping variables to the circuit inputs,

for each mapping variable, we generate clauses which ensure

that when a mapping variable is set to high, the associated

circuit input, i.e., a lattice variable, is set to a value determined

by the truth table entry. For our example, when abcd = 0000,

the constraints, such as, x1 a ⇒ x1 0000 and x3 b ⇒ x3 0000,

ensure that the circuit input has the corresponding value when

a lattice variable is assigned to a target literal. Note that ⇒ is

the imply operator and a ⇒ b is equal to a+b. When a lattice

variable is assigned to a constant value 0 or 1, the related

circuit input is set to that value.

Third, if the degree of the target function, denoted as δ , is

equal to that of the lattice function, for each product with δ
literals in the target function, we generate clauses indicating

that at least one of the products with δ variables in the lattice

function should be used to realize this product. Consider the

realization of f = bcd +abcde on the 3×3 lattice, where δ is

5. It is obvious that the product x1x4x5x6x9 or x3x6x5x4x7 of

f3×3 should realize abcde. Among many possibilities, this can

be achieved by setting the mapping variables x1 a, x4 b, x5 c,

x6 d, and x9 e to high. Moreover, it was noticed that realizing

products with a large number of literals in the lattice is a hard

task. Hence, if a product of a target function has more than

5 (determined empirically) literals, we generate clauses which

ensure that this product is realized by at least one product with

more than 5 variables in the lattice function.

Thus, a SAT problem, that formalizes the LM problem, is

generated based on the target and lattice functions. We also

consider the realization of the dual of the target function using

the dual of the given lattice function and generate another SAT

problem using a formulation similar to the one given above.

This is due to the fact that the dual of the lattice function may

have less number of products than that of the lattice function as

shown in Table I and the dual of the target function may have

less number of truth table entries where the target function is

high, yielding a SAT problem with a small number of variables

and clauses. After generating the alternative SAT problem,

we apply a SAT solver to the one with the least complexity

computed as the number of variables times the number of

clauses. Since it is easier for the SAT solver to find a solution

if it exists than to prove that there is no solution, we set a

time limit as 1200 seconds, determined empirically. Thus, if

the SAT solver finds a solution in the given time limit, the

assignment to the lattice variables is obtained by the mapping

variables set to high. Otherwise, it is accepted that the target

function cannot be realized using the given lattice.

Although there are benchmarks that JANUS can handle,

there are still instances that it may find them hard to solve.

However, such instances can be solved using a divide and

conquer approach where JANUS is applied to sub-functions

including a small number of products. Such a method is used

to find an upper bound on the LS problem as described next.

B. Computing the Initial Lower and Upper Bounds

We find the initial lower bound of the LS problem by taking

into account the products of the lattice and target functions.

Starting from the lattice size s equal to 1, we obtain all possible

lattice candidates for the lattice size s and for each lattice

candidate, we check if all products of the target function are

covered by the products of this lattice function as done in

the structural check described in Section III-A. If it is so,

the structural check is performed on the duals of the target

and lattice functions. If the structural check is also passed in

this case, the lower bound is determined by the lattice size.

Otherwise, another lattice candidate is tried. If there exist no

lattices with the lattice size s that pass the structural check,

then s is increased by 1 and this procedure is repeated until the

lower bound is found. It was observed that this computation

may yield better values than the general technique given in [3].

There exist three efficient methods used to find an initial

upper bound. The dual production (DP) [3] method realizes

a target function using an m× n lattice, where n and m are

the number of products in the target function and its dual,

respectively. In the product separation (PS) method [6], the

n products of a target function are placed on the columns

of a lattice each separated by a column full of zeros, filling

the unspecified entries of the lattice with constant 1. Thus, a

solution with a δ × (2n− 1) lattice is found, where δ is the

degree of the target function. In the dual product separation

(DPS) method [11], the m products of the dual of the target

function are placed on the rows of a lattice separated by a

row full of ones, filling the unspecified entries of the lattice

with constant 0. Thus, a solution with a (2m−1)×γ lattice is

found, where γ is the degree of the dual of the target function.

However, the improved version of the PS method, called

IPS, can be obtained by reducing the number of isolation

columns between the products as follows: i) the products with

a single literal can be used as isolation columns between the

products, if this literal is placed on every row of that column;

ii) the products with two literals do not need isolation columns,

if one literal is placed on the δ th row and the other is placed

on the other rows of that column; iii) for each product with

more than 2 literals, we check if it can be realized with another

product on a δ ×2 lattice without using an isolation column.

This check is passed if the number of products in the dual

of a function, including only these two products, is less than

or equal to δ . Similarly, the improved version of the DPS

method, called IDPS, can be obtained.

Furthermore, we developed the divide and synthesize (DS)

method which includes three steps described as follows:

1) partition the products in the target function f into two sub-

functions g and h such that f = g+ h, where g and h have

a number of products close to each other and a minimum

number of literals; 2) apply JANUS to these sub-functions and

add its solutions into a lattice using a single isolation column.

As an example, suppose that the sub-functions are realized

using 5×3 and 2×4 lattices. Thus, a 5×8 lattice is required

to realize f ; 3) for each solution on the sub-functions, explore

c

d

c 0

d 0 d

1 0

a

e

c 0

a

c 0

d 0

bb e

c

c

d

b a

e1

0

0

0

b

0

0

0 e

a
d

c

d

c

d

c

d

c

d

c

c

b

b

e

e

a

a

a

a

b

b

e

e

(a) (b) (c)
Fig. 4. Upper bounds of f = cd + cd +abe+abe: (a) DP; (b) PS; (c) IPS.

alternative realizations with a smaller number of rows and

columns. This is based on the fact that any logic function

can be realized using a lattice with a number of rows greater

than 2. Initially, on the lattice obtained at the second step, we

determine its size and number of rows, denoted as the best cost

bc and best row br, respectively. Then, if br > 2, we check if

the final lattice can have a size less than bc as described in the

following procedure: i) for a solution of a sub-function with

a br×n lattice, where br > 3, check if a (br−1)× k lattice,

where k > n, can be used to synthesize this sub-function. Note

that k initially set to n is incremented by 1 till the bc value

is exceeded or a solution is found; ii) for a solution of a sub-

function with an m×n lattice, where 1 < m < br−1, check if

this sub-function can be realized using an (br−1)×k lattice,

where k < n. Note that k initially set to n is decremented by

1 till there exists no solution. At the end of this procedure,

if a solution with a size less than bc is found, the lattice is

updated and this procedure is iterated till br is 3.

Thus, in JANUS, the initial upper bound is computed as the

minimum of solutions of all these methods.

As an example, consider f = cd + cd + abe + abe. The

DP (Fig. 4(a)), PS (Fig. 4(b)), and DPS methods find a

solution with a 6× 4, 3× 7, and 11× 4 lattice on this target

function, respectively. Besides, the solutions of the proposed

IPS (Fig. 4(c)), IDPS, and DS methods are 3× 5, 8×4, and

3× 5 lattices, respectively. Thus, the initial upper bound is

computed as 15. Note that the initial lower bound is 12 and

the minimum solution is obtained using a 3×4 lattice.

C. Realizing Multiple Functions on a Single Lattice

To realize multiple logic functions on a single lattice, we

developed a method, called JANUS-MF, which is similar to

the DS algorithm described in Section III-B. It is composed

of two parts. In the first part, as done in the second step

of the DS method, we find the realization of each logic

function using JANUS and add this solution into a single lattice,

separating it from another with a column full of zeros, filling

the unspecified entries with constant 1. In the second part, we

check if each logic function can be synthesized using a lattice

with a smaller number of rows and columns as done in the

third step of the DS method.

IV. EXPERIMENTAL RESULTS

This section presents the results of JANUS, JANUS-MF,

and the methods of [6], [9], [11]. Note that JANUS, devel-

oped in Perl, uses espresso [12] to find the ISOP forms

of target functions and their duals and glucose4.1 [13] to

solve a SAT problem. The proposed algorithms can be found

at http://www.ecc.itu.edu.tr/images/d/d4/JANUS.zip. We used

the updated version of the exact method of [6], where an issue,

that may cause the method to miss some paths in a switching

lattice, was fixed [11]. The results of the method [9] were

taken from [11]. In methods of [9], [11], the exact algorithm

of [6] was used since its solutions yield better results than its

approximate version.

Table II presents the results of algorithms on 48 instances,

where #in, #pi, and δ denote the number of inputs, prime

implicants, and degree of the target functions in ISOP form,

respectively. In this table, lb stands for the lower bound

found as described in Section III-B, oub is the old upper

bound computed based on the DP, PS, and DPS methods [11],

and nub is the new upper bound found considering also the

solutions of the IPS, IDPS, and DS methods. Finally, sol
and CPU denote the solution and run time of algorithms in

seconds, respectively. Note that the algorithms were run on an

Intel Xeon CPU at 2.40GHz with 28 cores and 128GB RAM

with the CPU time limit of 6 hours.

Observe from Table II that the use of new methods intro-

duced for finding an upper bound improves the existing upper

bound of [11] by 42.8% on average, reducing the search space

of the LS problem significantly using a little computational

effort. Note that while the DP, PS, and DPS methods find a

smaller upper bound on only one instance than other methods,

the proposed IPS, IDPS, and DS methods lead to better upper

bounds on 39 instances than other methods. Observe also

that the new upper bound can be better than the solutions of

existing methods proposed for the LS problem, e.g., 5xp1 3.

Observe from Table II that JANUS can find better solutions

in terms of lattice size than the exact algorithm of [6], e.g.,
ex5 15, ex5 17, and ex5 24, since it explores a smaller search

space due to the improved upper bounds and it encodes the LM

problem as a SAT problem efficiently. Moreover, the solutions

of JANUS on all instances are smaller than or equal to those

found by the existing algorithms, having the smallest lattice

size on average. Furthermore, JANUS finds a solution using the

least computational effort on average. On the other hand, the

strict rules on the realization of a product in the approximate

method of [6] yield the worst solutions on instances ex5 15,

ex5 17, and ex5 23. The solutions of the heuristic method

of [11] may be far away from the optimal, e.g., 5xp1 3,

ex5 24, and mp2d 01, since it does not consider all possible

lattice candidates. The method of [9] leads to solutions which

are worse than those of other algorithms on average.

Table III presents the results of JANUS-MF on three LGS91

benchmarks [14], where #out denotes the number of outputs

of given instances, size stands for the number of switches in

the lattice, and the straight-forward method is actually the

first part of JANUS-MF where the solution of JANUS on each

logic function is merged into a single lattice as described

in Section III-C. Observe that JANUS-MF outperforms the

straight-forward method by searching for realizations with a

small number of rows and columns, where the maximum gain

is achieved as 32% on the bw instance.

TABLE II
SUMMARY OF INITIAL LOWER AND UPPER BOUNDS AND RESULTS OF ALGORITHMS ON SINGLE FUNCTIONS.

Instance
Function Details Initial Lower and Upper Bounds [9] [11] Approximate [6] Exact [6] JANUS

#in #pi δ lb oub nub CPU sol sol CPU sol CPU sol CPU sol CPU

5xp1 1 7 11 5 16 105 32 4.1 5x10 5x5 501.2 6x5 21600.0 5x5 21600.0 4x6 2023.2
5xp1 3 6 14 5 15 135 40 57.3 4x11 5x27 21600.0 11x4 21600.0 11x4 21600.0 4x9 19745.8
b12 00 6 4 4 9 24 20 0.2 4x3 4x3 0.3 4x3 0.6 4x3 2.1 4x3 0.3
b12 01 7 7 4 12 35 20 0.2 4x4 4x4 1.1 4x4 1.6 5x3 8.5 5x3 1.1
b12 02 8 7 5 12 42 24 0.8 5x8 4x4 5.7 5x4 3.7 4x4 35.4 4x4 4.1
b12 03 4 4 2 6 6 6 0.1 2x5 3x2 0.1 3x2 0.2 3x2 0.1 3x2 0.1
b12 06 9 9 6 15 44 24 4.3 5x4 5x4 23.8 5x4 4.6 5x4 139.3 5x4 23.8
b12 07 7 6 4 16 24 24 0.3 6x8 3x6 1.1 5x4 2.5 3x6 5.4 3x6 1.5
c17 01 4 4 2 6 6 6 0.1 3x2 3x2 0.1 3x2 0.2 3x2 0.1 3x2 0.1
clpl 00 7 4 4 12 16 15 0.2 4x5 3x4 0.4 3x4 0.3 3x4 1.3 3x4 0.3
clpl 03 11 6 6 16 36 24 0.6 6x9 3x6 19.6 3x6 2.3 3x6 200.0 3x6 84.9
clpl 04 9 5 5 15 25 18 0.3 5x8 3x5 5.0 3x5 1.3 3x5 25.3 3x5 1.3
dc1 00 4 4 3 9 16 15 0.2 4x4 3x3 0.1 3x3 0.4 3x3 0.4 3x3 0.2
dc1 02 4 4 3 12 16 15 0.2 3x5 3x4 0.1 3x4 0.3 4x3 0.2 4x3 0.3
dc1 03 4 4 4 9 20 18 0.2 4x5 4x3 0.2 4x3 0.4 4x3 0.5 4x3 0.3
ex5 06 7 8 3 16 32 24 0.3 3x10 3x6 1.2 3x7 12.0 3x6 7.2 3x6 2.1
ex5 07 8 10 4 24 40 27 0.7 3x13 4x6 19.7 3x9 332.2 4x6 473.2 3x8 2.5
ex5 08 8 7 3 20 21 21 0.2 3x9 3x7 0.0 3x7 9.3 3x7 51.2 3x7 7.2
ex5 09 8 10 4 24 40 30 12.3 3x11 4x6 5.7 3x8 108.2 4x6 454.6 3x8 17.6
ex5 10 6 7 3 16 21 21 0.2 3x9 3x6 0.7 3x6 1.4 3x6 3.8 3x6 0.5
ex5 12 8 9 3 15 25 20 0.2 5x9 3x5 1.8 3x5 1.7 3x5 13.7 3x5 12.6
ex5 13 8 9 3 24 36 27 0.9 3x13 3x8 10.0 4x6 57.6 4x6 190.2 3x8 2.8
ex5 14 8 8 2 16 16 16 0.2 3x11 2x8 0.9 2x8 1.2 2x8 6.7 2x8 0.2
ex5 15 8 12 4 20 72 33 3.1 4x13 4x7 48.5 6x12 21600.0 6x5 21600.0 3x8 2562.4
ex5 17 8 14 4 20 105 42 23.2 4x10 4x7 1425.6 10x6 21600.0 6x6 21600.0 3x9 4377.6
ex5 19 8 6 3 16 18 18 0.1 5x7 3x6 1.4 3x6 1.1 3x6 6.9 3x6 0.4
ex5 21 8 10 3 20 57 30 0.5 4x9 3x7 8.2 4x7 1364.6 3x7 280.9 3x7 790.8
ex5 22 7 6 3 16 33 21 0.2 3x8 3x6 1.3 3x6 2.0 3x6 8.4 3x6 1.2
ex5 23 8 12 4 24 92 36 39.0 4x11 4x8 2465.0 11x5 21600.0 3x9 15418.6 3x9 3726.4
ex5 24 8 14 5 20 105 33 7.0 5x14 15x7 21600.0 3x11 21600.0 4x7 21600.0 3x8 1638.8
ex5 25 8 8 3 20 40 27 0.3 3x8 3x7 16.4 3x7 6.4 3x7 79.4 3x7 152.7
ex5 26 8 10 3 20 57 30 0.7 4x11 3x7 12.9 3x9 384.5 3x7 238.5 3x7 36.3
ex5 27 8 11 4 20 77 27 1.3 4x10 4x6 58.1 3x8 1049.5 4x6 1561.3 3x8 1229.3
ex5 28 8 9 3 24 27 27 0.2 3x13 3x8 5.3 3x8 180.2 6x4 51.5 3x8 1.6
misex1 00 4 2 4 6 8 8 0.1 4x3 4x2 0.1 4x2 0.2 4x2 0.2 4x2 0.1
misex1 01 6 5 4 12 35 18 0.2 5x5 3x5 1.9 4x4 1.7 3x5 7.4 3x5 1.1
misex1 02 7 5 5 12 40 25 0.4 5x5 5x4 24.0 5x4 4.6 5x4 50.9 5x4 19.7
misex1 03 7 4 5 9 28 20 0.3 4x6 4x3 0.9 5x3 1.2 4x3 3.9 4x3 0.5
misex1 04 4 5 4 12 25 18 0.2 4x7 3x4 0.2 5x3 1.0 3x4 0.7 3x4 0.4
misex1 05 6 6 4 12 42 21 0.3 4x6 4x4 4.6 5x4 4.9 4x4 13.4 4x4 2.1
misex1 06 6 5 4 12 35 18 0.2 4x7 5x3 1.3 5x3 1.6 5x3 4.7 5x3 1.3
misex1 07 6 4 4 9 20 18 0.3 5x5 4x3 0.7 5x3 1.0 4x3 1.6 4x3 0.5
mp2d 01 10 8 5 24 48 30 4.3 4x11 5x7 28.7 4x7 291.3 3x9 6478.3 3x9 3257.3
mp2d 02 11 10 4 28 50 33 0.9 4x13 4x9 33.9 4x7 730.7 4x7 4580.7 4x7 948.9
mp2d 03 10 5 8 15 72 32 4.5 7x6 5x5 42.3 4x6 188.2 6x4 1322.7 4x6 271.2
mp2d 04 10 6 9 15 57 36 5.5 7x3 7x3 18.9 7x3 58.8 7x3 3043.1 7x3 286.8
mp2d 06 5 3 5 8 18 16 0.3 5x4 6x2 0.3 7x2 1.2 4x3 1.1 6x2 0.4
newtag 00 8 8 3 16 32 24 0.2 3x8 3x6 2.7 3x6 2.1 3x6 19.0 3x6 2.2

Average 7.2 7.3 4.0 15.5 41.1 23.5 3.7 32.1 22.7 1000.0 22.0 2800.4 18.9 2974.8 18.3 859.2

TABLE III
SUMMARY OF RESULTS OF ALGORITHMS ON MULTIPLE FUNCTIONS.

Instance #out
straight-forward method JANUS-MF

sol size CPU sol size CPU

bw 28 5x119 595 12.7 3x135 405 14.1
misex1 7 5x31 155 25.3 3x42 126 30.4
squar5 8 5x31 155 31.7 3x36 108 59.7

V. CONCLUSIONS

This paper introduced the approximate method JANUS for

the synthesis of logic functions using lattices with a small

number of switches. It presented an efficient encoding of

the LM problem as a SAT problem, introduced methods that

improve the existing initial upper bounds of the search space,

and described how JANUS can be used to realize multiple

functions on a single lattice. It was shown that JANUS can find

promising solutions with respect to the existing methods.

REFERENCES

[1] A. Dehon, “Nanowire-based programmable architectures,” ACM JECT,
vol. 1, pp. 109–162, 2005.

[2] M. Dong and L. Zhong, “Nanowire crossbar logic and standard cell-
based integration,” IEEE TVLSI, vol. 17, no. 8, pp. 997–1007, 2009.

[3] M. Altun and M. Riedel, “Logic synthesis for switching lattices,” IEEE
Transactions on Computers, vol. 61, pp. 1588–1600, 2012.

[4] D. Alexandrescu, M. Altun, L. Anghel, A. Bernasconi, V. Ciriani,
L. Frontini, and M. Tahoori, “Logic synthesis and testing techniques for
switching nano-crossbar arrays,” MICPRO, vol. 54, pp. 14–25, 2017.

[5] S. Safaltin, O. Gencer, M. C. Morgul, L. Aksoy, S. Gurmen, C. A.
Moritz, and M. Altun, “Realization of four-terminal switching lattices:
Technology development and circuit modeling,” in DATE, 2019.

[6] G. Gange, H. Søndergaard, and P. J. Stuckey, “Synthesizing optimal
switching lattices,” ACM TODAES, vol. 20, pp. 6:1–6:14, 2014.

[7] T. Larrabee, “Test pattern generation using boolean satisfiability,” IEEE
TCAD, vol. 11, no. 1, pp. 4–15, 1992.

[8] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Synthesis of
switching lattices of dimensional-reducible boolean functions,” in VLSI-
SoC, 2016, pp. 1–6.

[9] A. Bernasconi, V. Ciriani, L. Frontini, V. Liberali, G. Trucco, and
T. Villa, “Logic synthesis for switching lattices by decomposition with
p-circuits,” in DSD, 2016, pp. 423–430.

[10] A. Bernasconi, V. Ciriani, L. Frontini, and G. Trucco, “Composition of
switching lattices for regular and for decomposed functions,” MICPRO,
vol. 60, pp. 207–218, 2018.

[11] M. Morgul and M. Altun, “Optimal and heuristic algorithms to synthe-
size lattices of four-terminal switches,” Integration, in press.

[12] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis.
Springer, 1984.

[13] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solver,” in IJCAI, 2009, pp. 399–404.

[14] S. Yang, “Logic synthesis and optimization benchmarks user guide:
Version 3.0,” MCNC, Tech. Rep., Jan. 1991.

